美国人眼中的大数据法律问题

来源:腾讯研究院 作者:蔡雄山 李思羽

蔡雄山 腾讯研究院法律研究中心首席研究员

李思羽 腾讯研究院助理研究员

2016年1月6日美国联邦贸易委员会(FTC)发布了一份题为《大数据:包容工具抑或排斥工具》(Big Data: A Tool for Inclusion or Exclusion?)的研究报告,介绍了大数据的生命周期、大数据技术应用给消费者带来的利益和风险,探讨了应当如何利用大数据,使人们既能充分享受其给社会带来的利益,又能最小化其法律和道德风险。

一、大数据技术利用争论

智能手机、电脑和其他联网设备的普及以及随之而来的消费者数据的体量剧增和大范围流动,将我们推入大数据时代。大数据分析技术能够引导新产品和服务研发、预测个人偏好、帮助定制服务和机会并指导个性化营销方案,因此它对于企业和消费者都十分有价值,越来越多的公司开始积极使用大数据技术。

一些人认为,大数据分析技术为提高消费者福利提供了无数机会。例如,大数据正在帮助将教育、信贷、医疗和就业机会定位到低收入和缺乏服务的人群,使之获得传统技术条件下所无法获得的机会。另一些人认为,大数据生命周期(收集、汇编和整合、分析、使用)的各阶段都可能产生错误和偏见,这些都可能导致潜在的歧视并进而对消费者产生不利。另外,还有人既承认大数据利用不可避免地会产生歧视问题,但是也相信充分的市场竞争能够纠正那些出现错误的数据分析及其应用。

二、美国对大数据的政策态度

自大数据挖掘技术及其应用环境成熟以来,美国一直对大数据技术应用持积极支持和鼓励的政策态度,并主张利用大数据提高消费者福利。自2010年起,奥巴马政府发动了一系列“我的数据”(My Data)行动以使美国公民能够安全的获取其个人数据,并鼓励能够使用和分析这些数据的私人部门发展,使之更好地为公民提供应用和服务,这些行动目的在于使消费者能够安全地获得其健康、税务、能源使用和教育等信息,为其更好地管理其工作和生活、高效获取社会福利提供便利。然而在这一过程,公民个人由于技术条件和知识水平限制难以取得行动的主动权,其数据权利处于容易受到政府和企业侵犯的风险之中。

自计算机技术产生以来,制定法律防止公权力和其他私主体侵犯个人信息就成为了美国的立法重点。与许多国家制定专门法律保护个人数据权利的立法模式(典型如欧盟及其成员国)不同,美国采取分散式立法的模式,即在公共部门范畴下,通过制定《信息自由法》和《隐私法案》限制公权力侵犯个人信息权利;在私人部门范畴下,在金融、电信、医疗等行业领域的市场管理规则中针对不同情况嵌入了个人信息保护条款。同时,作为高度重视新技术发展和创新的国家,美国在个人信息保护方面推行行业自律,包括通过网络隐私权保护的自律组织制定行业指引或提供隐私认证;同时,通过与欧盟签署数据共享协议(即“安全港协议”),以便利企业在欧盟和美国之间传输和利用数据。然而这些制度架构与快速发展的大数据实践相比,显得有些滞后了,无法很好地在技术利用与非经济价值的保护之间取得平衡。

2014年5月,美国总统执行办公室发布2014年全球“大数据”白皮书——《大数据:把握机遇,守护价值》(Big Data: Seize Opportunities, Preserving Values),从政策调整、法律制定、法律解释和技术革新几个方面对大数据时代下完善公民个人数据保护提出了建议,试图解决大数据利用与公民信息保护价值之间的冲突,以释放大数据为经济社会发展带来的新动能。

这种通过改进政策框架、法律规则及法律解释,解决利益冲突、释放新技术动能的规制思维,也延续到美国当前对于如何正确利用大数据以充分保护消费者的讨论中。

三、应考虑的消费者保护法律问题

大数据在收集、汇编和分析过程中的技术性和操作性偏差,以及大数据分析报告的使用不当,可能导致对某些消费者群体进行不当分类,并进而对其不当采取歧视措施。因此,FTC建议美国企业应当与时俱进地理解大数据时代下的消费者保护法,包括《公平信用报告法》(Fair Credit Reporting Act)、公平机会法律以及《联邦贸易委员会法》(Federal Trade Commission Act)等可能会适用于大数据实践的法律。

(一)合理界定消费者征信机构

美国的《公平信用报告法》适用于消费者征信机构(Consumer Reporting Agencies, CRA),并规定了这些机构应当遵守的合理程序,以确保消费者征信报告最大程度的精确性。消费征信机构,指收集并出售消费者报告,为在贷款、就业、保险、住房或其他特定利益或交易中判断消费者是否合格提供决策依据。传统上,消费者征信机构仅包括信贷部门、就业背景审查公司等为消费者合格决定提供特别服务的特殊公司。但在大数据时代下,一些数据中间商也被认为是消费者征信机构(尤其是当这些中间商打出其提供合格性征信服务的广告的情况下),因此应当接受《公平信用报告法》的管辖,履行该法律项下的法定义务。

近来,有一种预测性的大数据分析报告受到欢迎,即与传统的征信报告主要考察债务偿还历史不同,这种预测性分析报告使用一些非传统的参数(例如如邮政编码、社交网络使用情况、购物历史等),以分析消费者的信用风险。FTC认为,《公平信用报告法》也以同样的标准适用于这种类型报告,其涉及的消费者征信机构应当履行相应的法定义务,以确保消费者获得公正的评价。

(二)确保公平机会法律得到有效执行

FTC认为美国企业也应当考虑其利用大数据的过程中是否充分遵循了数项联邦公平机会法律,包括《公平信贷机会法》(Equal Credit Opportunity Act, ECOA)、《1964年民权法》第2章(Title VII of the Civil Rights Act of 1964)、《美国残疾人法》(Americans with Disabilities Act)、《就业年龄差异法》(Age Discrimination in Employment Act)、《公平住房法》(Fair Housing Act)、《反基因歧视法》(Genetic Information Nondiscrimination Act),这些法律禁止基于种族、肤色、性别、宗教、年龄、残疾状态、出生国籍、婚姻状况、基因信息的歧视。其中,FTC负责执行《公平信贷机会法》,这部法律禁止信贷歧视行为。如果信贷机构对信贷申请人采取了“差别待遇”(disparate treatment)或“差别影响”(disparate impact)措施,那么FTC将认定该信贷机构违反了《公平信贷机会法》。其中,“差别影响”指企业所采取的财务上中立的政策或实践但是对于受保护群体产生了不成比例的不利影响,除非这种政策和实践在商业上必要并且没有其他歧视性影响更小的替代性措施。

另外,FTC还对广告行为是否涉及公平机会法律给予了关注。在大多数情况下,信贷机构发送的吸引贷款的广告是公开的,所有人都可以申请贷款。《公平信贷机会法》的“规则B”禁止贷款机构对以口头或数据形式在广告或其他实践中阻止特定消费者合理的贷款申请选择,并要求信贷机构保存其挑选潜在的广告接受者的选择标准和广告文案。在大数据时代下,即使相关的广告行为是公开的,但是在一些案例中,美国司法部仍然将信贷机构的投放广告的选择方式作为其采取了歧视措施的证据,这是因为广告和营销实践可能影响信贷机构后续的贷款模式和贷款者获得贷款条件。

(三)防止大数据分析中采取不公平行为

《联邦贸易委员会法》第5节禁止在大数据分析中采取不公平或欺骗性的行为或实践。参与大数据分析的企业应当考虑其行为是否违反了对消费者的重要承诺(包括避免与第三方机构分享数据,向消费者提供数据分享选择,保护消费者个人信息等),以及其是否未能向消费者披露重要信息。另外,保存涉及消费者信息大数据的企业应当采取合理措施确保消费者数据的安全。

进一步地,作为一个最低限度的标准,如果大数据分析机构知道或者应当知道其顾客将为了欺骗或歧视性的目的而使用大数据分析报告,《联邦贸易委员会法》禁止其应当出售相关分析报告。

四、FTC对企业实践提出的建议

为了最大化大数据利用带来的利益并限制其可能对受保护人群带来的不利影响,FTC鼓励企业在大数据利用实践中考虑以下几个问题:

(一)数据集是否具有代表性?

企业应当考虑其数据集是否遗漏了有关特定人群的信息,并采取步骤解决此种代表性不足或代表性过度问题。例如,如果某个企业将其服务锁定为通过某种应用或社交网络进行交流的群体,这家公司可能会忽略那些对科技产品并不精通的人群。

(二)使用的数据模型是否导致偏见?

在大数据生命周期的收集和分析阶段,企业应当注意偏见是否被予以了适当考虑,并采取措施克服它们。例如,如果某家公司使用的算法只将那些来自顶尖大学的学生纳入计算范围,以帮助其做出雇佣选择,那么它在招募过程中就可能存在预设的偏见。

(三)基于大数据进行预测的准确性如何?

应当牢记的是,虽然大数据在检测相关性上十分有效,但它无法解释这些相关性是否有意义。“谷歌流感趋势”(Google Flu Trends)——一款基于谷歌搜索关键词预测流感病例数量的机器学习算法——很好地说明了这种局限。一开始这种算法似乎总能准确预测哪些地方流感更流行,但是时间一长,其错误率变得十分高。这可能是因为谷歌流感趋势的算法未能考虑某些特定参数,例如,在当地新闻报道流感爆发的时候人们比平时更可能去搜索流感信息,即使流感爆发地点远在十万八千里以外。

(四)对大数据的依赖是否导致道德或公平性问题?

企业应当评估那些纳入分析模型的因素,并在这些模型的预测性价值和公平性考量之间取得平衡。例如,某家公司可能会认为那些住所离公司近的员工的流动性更小。但是,另一家公司很有可能基于种族歧视的原因不将员工住所远近作为其雇佣算法的参数,尤其是在那些不同社区有不同的种族构成的地区。而这两种做法都可能导致公平或道德问题,都不应当受到鼓励。

五、结论

在美国,深化发展大数据的利用、为经济增长提供新动能已成为一项既定政策,其最终目的在于通过经济增长提高消费者的整体福利。在这一过程中,涉及如何在充分开发大数据经济价值的同时保护重要的社会价值,包括保护公民个人数据权利以及保护弱势群体的交易机会。通过政策调整、规则制定、法律解释和技术完善,解决大数据利用与非经济价值之间的冲突是美国的一贯政策态度。针对不加管理的大数据利用可能会对特定消费者群体产生不利、排除其交易机会这一问题,美国联邦贸易委员会从消费者保护法律的适用和技术优化方向两个角度,对大数据中间商和使用企业的实践提出建议,促使其在充分利用大数据的同时避免相应的法律风险和道德风险,从而促进更具有社会包容性的大数据实践。

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2016-01-22

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据猿

大数据周周看 | 大数据“黑科技”入驻里约奥运,昔日出行冤家喜结连理

<数据猿导读> 上周,最让人为之称道的便是出行行业两巨头宣布合并的消息,公告一出,一时激起一片哗然,随后反垄断的声音此起彼伏,总之滴滴每次一出手,总能如此兴师动...

3296
来自专栏镁客网

芯片创企伸手,神话可以复制吗?

本文希冀在复杂环境下理出些思绪,探讨一下芯片创企如何走出一条自己的路,甚至成为下一代巨头。

442
来自专栏科技向令说

响铃:生态赋能,海尔COSMOPlat“双跨”助力“农业新旧动能转换”

小雪是一位定居深圳的海归女孩,周末喜欢自己下厨。对食材挑剔的她,会把关每份食材的质量。因此,她选择在手机上一键定制了经海尔COSMOPlat农业生态诚信认证体系...

892
来自专栏人称T客

资本是狼 SaaS创始人如何防止被投资人干掉?|编译

作者:T 客汇 杨丽 张苏月 关键词:投资人,CEO 网址:www.tikehui.com ? B2C领域1号店创立于2008年,仅仅一年销售额猛增,但同样增长...

2484
来自专栏人称T客

IBM还要卖 联想还要买

【编者按】年初联想的两笔收购案在业内可谓掀起了不小的波澜,赚足了媒体眼球,联想也一鼓作气大肆宣传,品牌影响力再次提升,股价一路飙升。那么,本次收购后,联想采取了...

3614
来自专栏腾讯研究院的专栏

大数据时代的数据保护与数据开放┃腾讯研究院公开课

  坤源衡泰·中国民法成长论坛第三十讲   ...

5575
来自专栏人工智能快报

美国人工智能行业2017年人均年薪达6.5万美元

据《财富》杂志网站2017年5月1日报道,需要很多人才能创造出用机器人代替卡车司机、金融分析员和客服代表的人工智能。根据职业和招聘数据公司Paysa的研究,20...

2504
来自专栏钱塘大数据

2017大数据版图最新发布,大数据长期看好,短期看空?

说到最近几年最热门的技术流行语,少不了云计算、大数据、人工智能、物联网等热词。不过,尽管人人(至少是企业界)言必称大数据,但是其在企业的采用周期要远远滞后于炒作...

3695
来自专栏腾讯研究院的专栏

一小时破百万糊弄谁!众筹乱象你了解多少?

自从国内大电商平台照葫芦画瓢玩起众筹之后,这种以募集资金帮助初创企业发展的模式似乎就开始变味儿了。每天我都能在新闻中看到那些令我感到面红耳赤的消息。一些名不见...

3545
来自专栏人称T客

蓝色巨人IBM已经半残 Q3财报前景不容乐观

在标准普尔500指数上涨14%、纳斯达克指数的23%的这一年里,IBM的股价却下跌了12%。看起来IBM在周二公布第三季度财报时,并不需要做很多事情就能取悦...

35411

扫码关注云+社区