Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Yelp,如何使用深度学习对商业照片进行分类

Yelp,如何使用深度学习对商业照片进行分类

作者头像
大数据文摘
发布于 2018-05-23 09:38:08
发布于 2018-05-23 09:38:08
8970
举报
文章被收录于专栏:大数据文摘大数据文摘

作者:张天雷 来源:InfoQ 摘自:http://www.infoq.com/cn/news/2015/11/Yelp-photo

Yelp是美国最大点评网站,拥有世界各地的Yelper上传的成千上万的照片。各种各样的照片给进入当地的商业提供了一个丰富的窗口。通过开发一个照片理解系统使Yelp能够创建有关个人照片的语义数据。跟Yelp第一次在基于内容的照片多样化方面所做的尝试一样,由系统生成的数据正在增强Yelp近期推出的封面照片多样化、标签式照片浏览等服务。

构建一个照片分类器

对于理解照片中的模棱两可的目标,其实有许多不同的方式。一开始,为了帮助简化Yelp的问题,Yelp只专注于将照片分类为几个预定义的类。之后,Yelp又只专注于关于饭店的照片类别。

事实上将照片进行分类,就可以将其当做机器学习中的分类任务,需要开发一个分类器,Yelp首先需要做的就是收集训练数据,在图片分类任务中就是收集很多标签已知的照片。Yelp收集这些信息可以通过几种不同的方式:

  • 照片标题:在很多照片的标题中都包含代表照片自身含义的词汇,例如,很多“菜单”照片的标题中包含单词“菜单”。为了识别这些关于食物的项目,Yelp依靠自己的菜单结构(例如,http://www.yelp.com/menu/gary-danko-san-francisco/),它保留了每种食物的商业名单。Yelp发现,将列表中的食物项目与照片的标题进行匹配产生了一个高准确率的数据集。
  • 照片属性:当上传照片到Yelp上时,用户允许标记照片的一些属性,虽然它们并不总是准确的,但仍然可以很有效地帮助照片分类。
  • 众包:通过众包可以让大众自动参与照片的标注,并同时纠正一些错误的标注。Yelp已经发现,通过众包Yelp通过合理的成本(在时间和金钱)获得了质量总体良好的标签。众包体现了一种群体智能。

一旦Yelp有了标签数据,Yelp就开始采用“AlexNet”形式的深度卷积神经网络(CNNs)来识别这些图片(因为这种方法是一种监督学习方法,非监督学习目前仍然是深度学习的难点方向)。CNNs是由多个卷积层组成,ReLU层、pooling层、局部响应正则化层和全连接层。Yelp的CNN被建立在基于Caffe架构的AWS EC2 GPU实例上。Yelp喜欢Caffe,因为它简单易用、高性能、模块化、开源、还一直在不断完善。为了应对Caffe的软件依赖,Yelp使用Docker封装了Yelp的CNN,以便它可以更容易地部署。

Yelp还创建了抽象,以确保Yelp的CNN可以很容易地与其他形式的分类器进行集成,包括CNN的不同实例。如下图所示,Yelp的基线是一个“Caffe分类器”,它通过Caffe的方式运行CNN;它是一个抽象分类器的一种特殊形式,可以采取不同的信号,并执行不同的分类算法。Yelp目前的“facade”分类器,是一个集成分类器,采用了不同分类结果的加权平均。如果Yelp决定进一步集成依赖于其它信号的新的分类器,这将让问题变得更加简单。

Yelp在一个均匀黄金分割的2500张照片的测试集上进行试验,Yelp目前的“facade”分类器的整体精确度达到了94%,召回率达到了70%。根据Yelp的描述,虽然这些数字绝对可以再提高,但Yelp发现对于下面描述的应用它们已经足够了。

照片分类服务

Yelp使用面向服务的架构(SOA),Yelp做了一个RESTful照片分类服务,用来支持现有的和即将推出的Yelp的应用程序。由于服务预计拥有不止一个分类器(例如,不同的版本或为不同类型的业务),该服务API使用一个分类器ID,一个行业ID,以及可选的类,然后返回所有属于该行业的照片,其已经通过分类器被归类:

Yelp使用一个标准的MySQL数据库服务器来承载所有的分类结果,所有的服务请求可以通过简单的数据库查询被处理。为了避免更昂贵的实时分类,因为Yelp目前的应用并不取决于最新的照片分类,所以Yelp只执行线下分类。该架构如下图所示:对于每一个新的分类器,Yelp扫描所有的照片,并且将分类结果存储在一个数据库中。扫描在计算上消耗很大,但通过将分类器在任意多的机器上进行并行处理,Yelp可以减轻这一点。扫描结束后,Yelp会每天自动收集新的照片,并将它们发送到一个进行分类和数据库负载的批次中:

应用:封面照片多样化

一旦有了照片分类服务,就可以有效地增强Yelp的许多关键功能。Yelp的业务详细信息页面显示了一组“封面照片”,基于用户的反馈和某些照片的属性,它们能够通过照片评分引擎进行推荐。但是,目前Yelp的封面照片存在一个典型问题,即所选的照片缺乏多样性,例如,如下图所示,所有封面照片都是关于食物的(拉面),用户无法看到其他方面的照片,除非他们点击“查看全部”按钮。

通过照片分类服务,现在就可以让封面照片变得多样化,Yelp可以容易地确定最高得分的非食品的照片,然后将其纳入封面照片。通过严格的A / B测试,Yelp已经证实饭店的浏览者更愿意看到一个显示突出的“食品”照片和突出的“非食品”照片,以及两个小“食品”的照片和另外两个“非食品”照片,如下图所示。多样化大大增加了Yelp用户与照片之间的互动。

应用:标签式浏览照片

因为任何人浏览Yelp照片都是在有了解之前,大部分来自于饭店的Yelp照片都是食物。但Yelp从用户中得到反馈,他们发现用户关心的可不仅仅是食物。有些人使用Yelp的图片用来检查一个特殊事件的气氛或导航到一个第一次去的地点,而其他人使用Yelp的照片用于一些更严肃的应用,如发现餐厅是否能容纳残疾的顾客。随着标签式照片浏览的推出,所有这些任务现在都变得更容易、更高效。

Yelp表示,标签式照片浏览是他们的照片分类服务现在提供的最显著的应用。照片现在在各自的标签(类)下进行组织;从下图可以看出,跳到你正在寻找的准确信息现在变得更加容易。

下一步是什么

任何机器学习系统都不可能是完美的。Yelp表示,如果你想帮助提高Yelp照片分类的质量,请随意标注你看到的任何未分类的照片。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2015-11-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
深度 | 生产级深度学习的开发经验分享:数据集的构建和提升是关键
本文从生产层面强调了深度学习项目开发中需要更加重视数据集的构建,并以作者本人的亲身开发经验为例子,分享了几个简单实用的建议,涉及了数据集特性、迁移学习、指标以及可视化分析等层面。
机器之心
2018/07/30
5500
深度 | 生产级深度学习的开发经验分享:数据集的构建和提升是关键
五个案例,三大心得,Meratix创始人带你进阶深度学习的实践应用之路
不谈理论,只谈实战。 当我们需要用深度学习处理现实问题时,除了相关的技术和数据,你还需要掌握一系列的小诀窍,并将这些技巧用在级联模型、智能增强、合理的评价标准、建立可重用的训练管道、有效推断与减小模型大小等等方面。 本文由深度学习的实践者,位于柏林的创业公司Merantix所著,五个案例,三大心得,带你在深度学习的应用之路上快速打怪升级。 作者 | Rasmus Rothe 编译 | AI100(rgznai100) 近年来,人工智能正迅速崛起,这主要归功于深度学习的成功。 深度神经网络的突破来
AI科技大本营
2018/04/27
8570
五个案例,三大心得,Meratix创始人带你进阶深度学习的实践应用之路
Active Learning: 一个降低深度学习时间,空间,经济成本的解决方案
下面要介绍的工作发表于CVPR2017(http://cvpr2017.thecvf.com/),题为“Fine-tuning Convolutional Neural Networks for
用户1332428
2018/03/09
1.2K0
Active Learning: 一个降低深度学习时间,空间,经济成本的解决方案
独家 | 如何改善你的训练数据集?(附案例)
这张幻灯片是Andrej Karpathy 在Train AI 演讲的一部分,我很赞同它表达的观点。它充分体现了深度学习在研究和应用上的差异。学术论文几乎全部集中在新的和改进的模型上,使用的数据集是从公共数据集中选出的一小部分。相反,我认识的将深度学习作为实际应用的一部分人,他们大部分时间都在思考如何改善训练数据。
数据派THU
2018/07/30
7830
独家 | 如何改善你的训练数据集?(附案例)
大规模食品图像识别:T-PAMI 2023论文解读
美团基础研发平台视觉智能部与中科院计算所展开科研课题合作,共同构建大规模数据集Food2K,并提出渐进式区域增强网络用于食品图像识别,相关研究成果已发表于T-PAMI 2023。
美团技术团队
2023/02/28
1.1K0
大规模食品图像识别:T-PAMI 2023论文解读
9大Python深度学习库,选出最适合你的那个
如果你对深度学习和卷积神经网络感兴趣,但是并不知道从哪里开始,也不知道使用哪种库,那么这里就为你提供了许多帮助。 在这篇文章里,我详细解读了9个我最喜欢的Python深度学习库。 这个名单并不详尽,它只是我在计算机视觉的职业生涯中使用并在某个时间段发现特别有用的一个库的列表。 这其中的一些库我比别人用的多很多,尤其是Keras、mxnet和sklearn-theano。 其他的一些我是间接的使用,比如Theano和TensorFlow(库包括Keras、deepy和Blocks等)。 另外的我只是在一些特别
新智元
2018/03/23
1.3K0
9大Python深度学习库,选出最适合你的那个
深度学习 vs. 大数据:神经网络权值的版权属于谁?
【编者按】深度神经网络能够焕发新春,大数据功不可没,然而大数据的版权是否应当延伸到深度学习产生的知识,这是一个现实的问题。本文通过ImageNet可视化大数据、Caffe共享深度学习模型和家中训练三个场景审查了深度学习的权值与大数据的关系,介绍了目前的问题和解决方案。文章最后预测深度学习将来可能需要相关的“AI法”。 要获得有用的学习效果,大型多层深度神经网络(又名深度学习系统)需要大量的标签数据。这显然需要大数据,但可用的可视化大数据很少。今天我们来看一个非常著名的可视化大数据来源地,深入了解一下训练过的
CSDN技术头条
2018/02/09
1.1K0
深度学习 vs. 大数据:神经网络权值的版权属于谁?
业界 | 人人都能用的深度学习:当前三大自动化深度学习平台简介
选自DataScienceCentral 作者:William Vorhies 机器之心编译 参与:Panda 深度学习技术往往比较复杂,从头开发的难度较大,但现在有一些公司提供了能帮助开发者轻松使用深度学习的自动化深度学习(ADL)平台,比如微软的 CustomVision.AI、谷歌的 Cloud AutoML、OneClick.AI。Data Science Central 近日发文对这三个平台进行了比较和盘点,机器之心对该文做了编译介绍。 阻碍我们使用深度学习方法的原因有很多,其中最主要的是深度学习
机器之心
2018/06/08
5870
无论如何,这是哪条鲸鱼?利用深度学习对鲸鱼进行人脸识别
“正确的鲸鱼识别”是一个由NOAA Fisheries在Kaggle.com数据科学平台上组织的计算机视觉竞赛。我们在deepsense.io的机器学习团队已经在竞赛中获得了第一名!在这篇文章中,我们将描述了我们的解决方案
HesionBlack
2018/06/01
1.4K0
看照片挑民宿:Airbnb如何重新训练ResNet50,实现房间图片分类优化
大数据文摘出品 编译:傅一洋、VVN、笪洁琼、钱天培 走进Aribnb位于旧金山总部的办公楼,你会看到一个个装修各异的会议室。这些会议室正是Airbnb形形色色民宿的缩影。 Airbnb为数百万的民宿提供了一个平台,也因此囊获了一大批民俗房间细节照片和用户数据。 坐拥百万级别的用户数据,Airbnb的数据团队可谓将数据的价值发挥地淋漓尽致。传统的推荐系统、广告系统自是不用说,深度学习的应用更是让Airbnb的数据有了前所未有的价值。 今天,文摘菌就要分享一篇来自Airbnb数据团队的课题小报告。让我们一起来
大数据文摘
2018/06/29
7550
深度学习大神都推荐入门必须读完这9篇论文
Introduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力的创新结果。随着Alex Krizhevsky开始使用神经网络,将分类错误率由26%降到15%并赢得2012年度ImageNet竞赛(相当于机器视觉界的奥林匹克)时,它就开始声名大噪了。从那时起,一票公司开始在它们的核心服务中使用深度学习技术。例如Facebook用它进行自动的图像标签,google用它做照片检索,amazon用它做产品推荐,Pin
机器学习AI算法工程
2018/03/15
1.3K0
深度学习大神都推荐入门必须读完这9篇论文
九大深度学习框架
开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提供先进的机器学习和人工智能的能力。那么如何决定哪个开源框架最适合你呢?本文试图通过对比深度学习各大框架的优缺点,从而为各位读者提供一个参考。你最看好哪个深度学习框架呢? 现在的许多机器学习框架都可以在图像识别、手写识别、视频识别、语音识别、目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业务问题。所以,本文希望下面的图表和讲解能够提供直观方法,帮助读者解决业务问题。 下图总结了在 GitHub 中最受
朱晓霞
2018/04/18
1.1K0
九大深度学习框架
【他山之石】大视觉模型:举例,7个用例和2024年的挑战
“他山之石,可以攻玉”,站在巨人的肩膀才能看得更高,走得更远。在科研的道路上,更需借助东风才能更快前行。为此,我们特别搜集整理了一些实用的代码链接,数据集,软件,编程技巧等,开辟“他山之石”专栏,助你乘风破浪,一路奋勇向前,敬请关注!
马上科普尚尚
2024/07/31
4521
【他山之石】大视觉模型:举例,7个用例和2024年的挑战
深度学习的应用总结(翻译)
原文地址:https://en.wikipedia.org/wiki/Intelligent_personal_assistant 当首次介绍深度学习时,我们认为它是一个要比机器学习更好的分类器。或者,我们亦理解成大脑神经计算。 第一种理解大大低估了深度学习构建应用的种类,而后者又高估了它的能力,因而忽略了那些不是一般人工智能应用的更现实和务实的应用。 最好最自然的理解应该是从人机交互角度来看待深度学习应用。深度学习系统似乎具备近似于生物大脑的能力,因此,它们可以非常高效地应用于增强人类或者动物已经可以执
云时之间
2018/04/11
1K0
干货 | 深度学习的实践应用之路
AI科技评论按:本文由图普科技编译自《Applying Deep Learning to Real-world Problems》,AI科技评论独家首发。 近年来,人工智能的崛起可以说是得益于深度学习的成功。驱动深度神经网络突破的三个主要因素分别是:海量的训练数据、强大的计算架构和学术领域的相关进展。因此,深度学习在图像分类、面部识别等任务的表现上不仅超越了传统方法,还超越了人类水平。这一切都为那些使用深度学习解决实际问题的新业务创造了巨大的发展潜力。 在位于柏林的Merantix总部,我们致力于研究这项新
AI科技评论
2018/03/13
7610
干货 | 深度学习的实践应用之路
[深度学习概念]·深度学习的目标检测技术演进解析
object detection个人理解,就是在给定的图片中精确找到物体所在位置,并标注出物体的类别。object detection要解决的问题就是物体在哪里,是什么这整个流程的问题。然而,这个问题可不是那么容易解决的,物体的尺寸变化范围很大,摆放物体的角度,姿态不定,而且可以出现在图片的任何地方,更何况物体还可以是多个类别。
小宋是呢
2019/06/27
5000
[深度学习概念]·深度学习的目标检测技术演进解析
GAN 优化 Yelp 形象图片广告
论文标题:You eat with your eyes first: Optimizing Yelp Image 论文链接:https://arxiv.org/abs/2011.01434 论文单位:斯坦福大学
CV君
2020/11/23
2K0
GAN 优化 Yelp 形象图片广告
创意视觉应用︱基于深度学习的CVaaS计算机视觉即服务案例
CVaaS 就是 Computer Vision as a Service, 我们把 CV 的部分标准化成为了一种服务,而每一个行业可以在这里找到自己行业需要的和图像处理、视频处理、计算机视觉相关的算法服务,然后他们可以整合这些算法服务成为他们需要的应用。
悟乙己
2019/05/26
9330
深度学习让系统“看”懂短视频内容
很高兴可以和大家分享深度学习在短视频视觉内容分析中的应用,分享包括四个方面,首先回顾深度学习的发展历程和讲述深度学习在短视频领域进行自动化视频内容分析的意义和必要性,再结合美拍短视频业务分享我们将深度学习应用到视频内容理解中遇到的问题和解决思路,最后从产品、数据以及技术层面展望后续的一些优化方向。
LiveVideoStack
2021/09/02
1.8K0
深度学习让系统“看”懂短视频内容
深度学习在美团点评的应用
前言 近年来,深度学习在语音、图像、自然语言处理等领域取得非常突出的成果,成了最引人注目的技术热点之一。美团点评这两年在深度学习方面也进行了一些探索,其中在自然语言处理领域,我们将深度学习技术应用于文本分析、语义匹配、搜索引擎的排序模型等;在计算机视觉领域,我们将其应用于文字识别、目标检测、图像分类、图像质量排序等。下面我们就以语义匹配、图像质量排序及文字识别这三个应用场景为例,来详细介绍美团点评在深度学习技术及应用方面的经验和方法论。 基于深度学习的语义匹配 语义匹配技术,在信息检索、搜索引擎中有着重要的
美团技术团队
2018/03/12
1.5K0
深度学习在美团点评的应用
推荐阅读
相关推荐
深度 | 生产级深度学习的开发经验分享:数据集的构建和提升是关键
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档