专栏首页蜉蝣禅修之道基于Huffman编码的压缩软件的Python实现

基于Huffman编码的压缩软件的Python实现

哈夫曼编码是利用贪心算法进行文本压缩的算法,其算法思想是首先统计文件中各字符出现的次数,保存到数组中,然后将各字符按照次数升序排序,挑选次数最小的两个元素进行连结形成子树,子树的次数等于两节点的次数之和,接着把两个元素从数组删除,将子树放入数组,重新排序,重复以上步骤。为了解压,在压缩时首先往文件中填入huffman编码的映射表的长度,该表的序列化字符串,编码字符串分组后最后一组的长度(编码后字符串长度模上分组长度),最后再填充编码后的字符串。本算法中以一个字节,8位作为分组长度,将编码后二进制字符串一一分组。代码如下:

__author__ = 'linfuyuan'
import struct
import pickle

type = int(raw_input('please input the type number(0 for compress, 1 for decompress):'))
file = raw_input('please input the filepath:')


class Node:
    def __init__(self):
        self.value = ''
        self.left = None
        self.right = None
        self.frequency = 0
        self.code = ''


# let the unique value be the key in the map
def change_value_to_key(huffmap):
    map = {}
    for (key, value) in huffmap.items():
        map[value] = key
    return map


if type == 0:
    origindata = ''
    # count the frequency of each letter
    lettermap = {}

    def give_code(node):
        if node.left:
            node.left.code = '%s%s' % (node.code, '0')
            give_code(node.left)
        if node.right:
            node.right.code = '%s%s' % (node.code, '1')
            give_code(node.right)


    def print_code(node):
        if not node.left and not node.right:
            print "%s %s" % (node.value, node.code)
        if node.left:
            print_code(node.left)
        if node.right:
            print_code(node.right)


    def save_code(map, node):
        if not node.left and not node.right:
            map[node.value] = node.code
        if node.left:
            save_code(map, node.left)
        if node.right:
            save_code(map, node.right)


    with open(file)as f:
        for line in f.readlines():
            origindata += line
            for j in line:
                if lettermap.get(j):
                    lettermap[j] += 1
                else:
                    lettermap[j] = 1
    nodelist = []
    for (key, value) in lettermap.items():
        node = Node()
        node.value = key
        node.frequency = value
        nodelist.append(node)
    nodelist.sort(cmp=lambda n1, n2: cmp(n1.frequency, n2.frequency))
    for i in range(len(nodelist) - 1):
        node1 = nodelist[0]
        node2 = nodelist[1]
        node = Node()
        node.left = node1
        node.right = node2
        node.frequency = node1.frequency + node2.frequency
        nodelist[0] = node
        nodelist.pop(1)
        nodelist.sort(cmp=lambda n1, n2: cmp(n1.frequency, n2.frequency))
    # give the code
    root = nodelist[0]
    give_code(root)
    huffman_map = {}
    # save the node code to a map
    save_code(huffman_map, root)
    code_data = ''
    for letter in origindata:
        code_data += huffman_map[letter]
    output_data = ''
    f = open('%s_compress' % file, 'wb')
    huffman_map_bytes = pickle.dumps(huffman_map)
    f.write(struct.pack('I', len(huffman_map_bytes)))
    f.write(struct.pack('%ds' % len(huffman_map_bytes), huffman_map_bytes))
    f.write(struct.pack('B', len(code_data) % 8))
    for i in range(0, len(code_data), 8):
        if i + 8 < len(code_data):
            f.write(struct.pack('B', int(code_data[i:i + 8], 2)))
        else:
            # padding
            f.write(struct.pack('B', int(code_data[i:], 2)))
    f.close()
    print 'finished compressing'
if type == 1:
    f = open(file, 'rb')
    size = struct.unpack('I', f.read(4))[0]
    huffman_map = pickle.loads(f.read(size))
    left = struct.unpack('B', f.read(1))[0]
    data = f.read(1)
    datalist = []

    while not data == '':
        bdata = bin(struct.unpack('B', data)[0])[2:]
        datalist.append(bdata)
        data = f.read(1)
    f.close()
    for i in range(len(datalist) - 1):
        datalist[i] = '%s%s' % ('0' * (8 - len(datalist[i])), datalist[i])
    datalist[-1] = '%s%s' % ('0' * (left - len(datalist[-1])), datalist[-1])
    encode_data = ''.join(datalist)
    current_code = ''
    huffman_map = change_value_to_key(huffman_map)
    f = open('%s_origin' % file, 'w')
    for letter in encode_data:
        current_code += letter
        if huffman_map.get(current_code):
            f.write(huffman_map[current_code])
            current_code = ''
    f.close()

    print 'finished decompressing'
raw_input('please press any key to quit')

代码中有用到pickle模块进行对象序列化,还有struct模块进行读写二进制文件。

由于算法中运算量最⼤的地⽅在于循环⾥嵌套了排序,故算法的时间复杂度是O(n2logn)。

经过压缩后,文件大⼩小分别为110KB和931KB。原来⼤⼩为190KB和 2.1MB,压缩效果明显。

希望对大家有用。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • LeetCode之Generate Parentheses(C++)

    forrestlin
  • 优化后的Levensthein distance算法实现

    forrestlin
  • 自定义对话框绑定控件

    forrestlin
  • jQuery (二)

    还可以使用三个值,第一值为事件,第二个值为Event对象的data属性,在调用最后一个处理函数的时候,会将第二个值作为对象的data属性,这样即可避免使用闭包操...

    mySoul
  • MacOS抓包工具Charles

    今天分享的是最后一个Charles。抓包分2个, 一个是移动端的,一个是macOS自带的应用。

    叉叉敌
  • 在linux下,安装python3.5.

    因为系统中安装了python2.6.6,所以在安装时,需要指定一个目录来安装这个文件,我使用的是/usr/local/python3

    py3study
  • 通过集成学习检测伪造评论(CS LG)

    客户通过使用在线评论来分享他们的经验来表示他们对消费产品的满意度。 几种基于机器学习的方法可以自动检测欺骗性和虚假评论。最近,有研究报告了集成学习方法与传统机器...

    小童
  • node的第一步,hello,以及小技巧和CPU使用情况。到底能用几个核心?

    打开记事本,写这么一行,然后保存关闭(文件名hello),再把扩展名(.txt)改成.js。代码就写好了。

    用户1174620
  • 树莓派+花生棒+leanote搭建自己的笔记服务器

    用户1749219
  • 【Python实践-6】将不规范的英文名

    1、函数,面向过程的程序设计的基本单元。何为面向过程?通过一层一层的函数调用,把复杂任务分解成简单的任务。

    py3study

扫码关注云+社区

领取腾讯云代金券