前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >什么是计算,什么可以计算?

什么是计算,什么可以计算?

作者头像
大数据文摘
发布2018-05-24 14:11:09
1.2K0
发布2018-05-24 14:11:09
举报
文章被收录于专栏:大数据文摘大数据文摘

本文摘自:《复杂》第四章 计算 作者:梅拉妮·米歇尔

编者按:自从计算机诞生以来,计算的概念已经走过了很长一段时间,现在许多科学家都将计算视为自然界中很普遍的现象。细胞、组织、植物、免疫系统和金融市场显然和计算机的运作方式不一样,那么他们说的计算到底是什么呢?他们又为什么要这样说呢?

◆ ◆ ◆

什么是计算?什么可以计算?

香农的信息定义关注的是消息源的可预测性。不过在现实世界中,信息是用来分析并产生意义的东西,信息被存储,并和其它信息结合,产生结果或行为。总之,信息是用来计算的。

历史上计算的意义变化很大。直到20世纪40年代末,计算都是指的手工进行数学运算(小学生称之为“做算术”)。计算员(Computer)就是做数学运算的人。我以前的老师伯克斯(Art Burks)常和我们说他娶的是“计算机”——指的是二战时被征召入伍手工计算弹道的妇女,伯克斯的夫人在遇到他时正是这样一位计算员。

现在计算指的是各种各样的计算机干的事情,另外自然界的复杂系统似乎也干这个。但是计算到底是什么呢?它又能做些什么呢?计算机什么都能算吗?是不是存在原则上的局限性?这些问题都是在20世纪中叶才得到解决。

◆ ◆ ◆

希尔伯特问题和哥德尔定理

对计算的基础及其局限的研究,导致了电子计算机的发明,但其最初的根源却是为了解决一组抽象(而且深奥)的数学问题。这些问题是德国数学大师希尔伯特(David Hilbert)于1900年在巴黎的国际数学家大会上提出来的。

希尔伯特,1862–1943(美国物理学会西格尔图像档案,兰德收藏)

(AIP Emilio Segre Visual Archives, Lande Collection)

希尔伯特在演讲中提出了在世纪之交面临的23个丞待解决的数学问题。其中第2和第10问题后来影响最大。实际上,它们不仅仅是数学内部的问题;它们是关于数学本身以及数学能证明什么的问题。总的来说,这些问题可以分为三个部分:

1.数学是不是完备的?

也就是说,是不是所有数学命题都可以用一组有限的公理证明或证否。

举个例子,还记得中学几何里学过的欧几里得公理吧?记不记得用这些公理可以证明“三角形内角和为180度”这样的定理?希尔伯特的问题是:是不是有某个公理集可以证明所有真命题?

2.数学是不是一致的?

换句话说,是不是可以证明的都是真命题?“真命题”是专业术语,但我在这里用的是直接意义。假如我们证出了假命题,例如1+1=3,数学就是不一致的,这样就会有大麻烦。

3.是不是所有命题都是数学可判定的?

也就是说,是不是对所有命题都有明确程序(definite procedure)可以在有限时间内告诉我们命题是真是假?这样你就可以提出一个数学命题,比如“所有比2大的偶数都可以表示为两个素数之和,”然后将它交给计算机,计算机就会用“明确程序”在有限时间里得出命题是“真”还是“假”的结论。

最后这个问题就是所谓的Entscheidungsproblem(“判定问题”),它可以追溯到17世纪的数学家莱布尼茨(Gottfried Leibniz)。莱布尼茨建造了他自己的计算机器,并且认为人类将建造出能判定所有数学命题真假的机器。

这三个问题过了30年都没有解决,不过希尔伯特很有信心,认为答案一定是“是,”并且还断言“不存在不可解的问题。”

然而他的乐观断言并没有维持太久。可以说非常短命。因为就在希尔伯特做出上述断言的同一次会议中,一位25岁的数学家宣布了对不完备性定理的证明,他的发现震惊了整个数学界,这位年轻人名叫哥德尔(Kurt Gödel)。不完备性定理说的是,如果上面的问题2的答案是“是”(即数学是一致的),那么问题1(数学是不是完备的)的答案就必须是“否。”

哥德尔,1906-1978

(照片由普林斯顿大学图书馆提供)

哥德尔的不完备性定理是从算术着手。他证明,如果算术是一致的,那么在算术中必然存在无法被证明的真命题——也就是说,算术是不完备的。而如果算术是不一致的,那么就会存在能被证明的假命题,这样整个数学都会崩塌。

哥德尔的证明很复杂。不过直观上却很容易解释。哥德尔给出了一个数学命题,翻译成白话就是“这个命题是不可证的。”

仔细思考一下。这个命题很奇怪,它居然谈论的是它自身——事实上,它说的是它不可证。我们姑且称它为“命题A。”现在假设命题A可证。那么这样它就为假(因为它说它不可证)。这就意味着证明了假命题——从而算术是不一致的。好了,那我们就假设它命题A不可证。这就意味着命题A为真(因为它断言的就是自己不可证),但这样就存在不可证的真命题——算术是不完备的。因此,算术要么不一致,要么不完备。

难以想象这个命题如何转换成用数学语言表述,但是哥德尔做到了——哥德尔的证明的复杂和精彩之处就在此,在这里我们不去讨论。

绝大多数数学家和哲学家都坚定地认为希尔伯特问题能被正面解决,这对他们是个沉重的打击。就像数学作家霍吉斯(Andrew Hodges)说的:“这是在研究中惊人的转折,因为希尔伯特曾以为他的计划将一统天下。对于那些认为数学完美而且无懈可击的人来说,这让人难以接受……”

◆ ◆ ◆

图灵机和不可计算性

哥德尔干净利落地解决了希尔伯特第一和第二问题,接着第三问题又被英国数学家图灵(Alan Turing)干掉了。

图灵,1912-1954

1935年,图灵23岁,在剑桥跟随逻辑学家纽曼(Max Newman)攻读研究生。纽曼向图灵介绍了哥德尔刚刚得出的不完备性定理。在理解哥德尔的结果之后,图灵发现了该如何解决希尔伯特第三问题,判定问题,同样,他的答案也是“否。”

图灵是怎么证明的呢?前面说过,判定问题问的是,是不是有“明确程序”能判定任意命题是否可证?“明确程序”指的是什么呢?图灵的第一步就是定义这个概念。沿着莱布尼茨在两个世纪以前的思路,图灵通过构想一种强有力的运算机器来阐述他的定义,这个机器不仅能进行算术运算,也能操作符号,这样就能证明数学命题。通过思考人类如何计算,他构造了一种假象的机器,这种机器现在被称为图灵机。图灵机后来成了电子计算机的蓝图。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2016-05-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • ◆ ◆ ◆
  • ◆ ◆ ◆
  • ◆ ◆ ◆
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档