Jupyter Notebook的27个窍门,技巧和快捷键

翻译|姜范波 校对|毛丽 & 寒小阳

Jupyther notebook ,也就是一般说的 Ipython notebook,是一个可以把代码、图像、注释、公式和作图集于一处,从而实现可读性分析的一种灵活的工具。

Jupyter延伸性很好,支持多种编程语言,可以很轻松地安装在个人电脑或者任何服务器上——只要有ssh或者http接入就可以啦。最棒的一点是,它完全免费哦。

Jupyter 界面

默认情况下,Jupyter Notebook 使用Python内核,这就是为什么它原名 IPython Notebook。Jupyter notebook是Jupyter项目的产物——Jupyter这个名字是它要服务的三种语言的缩写:Julia,PYThon和R,这个名字与“木星(jupiter)”谐音。本文将介绍27个轻松使用Jupyter的小窍门和技巧。

◆ ◆ ◆

1.快捷键

高手们都知道,快捷键可以节省很多时间。Jupyter在顶部菜单提供了一个快捷键列表:Help > Keyboard Shortcuts 。每次更新Jupyter的时候,一定要看看这个列表,因为不断地有新的快捷键加进来。另外一个方法是使用Cmd + Shift + P ( Linux 和 Windows下 Ctrl + Shift + P亦可)调出命令面板。这个对话框可以让你通过名称来运行任何命令——当你不知道某个操作的快捷键,或者那个操作没有快捷键的时候尤其有用。这个功能与苹果电脑上的Spotlight搜索很像,一旦开始使用,你会欲罢不能。

几个我的最爱:

  • Esc + F 在代码中查找、替换,忽略输出。
  • Esc + O 在cell和输出结果间切换。
  • 选择多个cell:
    • Shift + J 或 Shift + Down 选择下一个cell。
    • Shift + K 或 Shift + Up 选择上一个cell。
    • 一旦选定cell,可以批量删除/拷贝/剪切/粘贴/运行。当你需要移动notebook的一部分时这个很有用。
  • Shift + M 合并cell.

◆ ◆ ◆

2.变量的完美显示

有一点已经众所周知。把变量名称或没有定义输出结果的语句放在cell的最后一行,无需print语句,Jupyter也会显示变量值。当使用Pandas DataFrames时这一点尤其有用,因为输出结果为整齐的表格。

鲜为人知的是,你可以通过修改内核选项ast_note_interactivity,使得Jupyter对独占一行的所有变量或者语句都自动显示,这样你就可以马上看到多个语句的运行结果了。

In [1]: from IPython.core.interactiveshell import InteractiveShell        InteractiveShell.ast_node_interactivity = "all"In [2]: from pydataset import data        quakes = data('quakes')        quakes.head()        quakes.tail()Out[2]:        lat long    depth   mag stations        1   -20.42  181.62  562 4.8 41        2   -20.62  181.03  650 4.2 15        3   -26.00  184.10  42  5.4 43        4   -17.97  181.66  626 4.1 19        5   -20.42  181.96  649 4.0 11Out[2]:        lat long    depth   mag stations        996 -25.93  179.54  470 4.4 22        997 -12.28  167.06  248 4.7 35        998 -20.13  184.20  244 4.5 34        999 -17.40  187.80  40  4.5 14        1000    -21.59  170.56  165 6.0 119

如果你想在各种情形下(Notebook和Console)Jupyter都同样处理,用下面的几行简单的命令创建文件~/.ipython/profile_default/ipython_config.py即可实现:

c = get_config()# Run all nodes interactivelyc.InteractiveShell.ast_node_interactivity = "all"

◆ ◆ ◆

3.轻松链接到文档

在Help 菜单下,你可以找到常见库的在线文档链接,包括Numpy,Pandas,Scipy和Matplotlib等。

另外,在库、方法或变量的前面打上?,即可打开相关语法的帮助文档。

In [3]: ?str.replace()

        Docstring:
        S.replace(old, new[, count]) -> str

        Return a copy of S with all occurrences of substring
        old replaced by new.  If the optional argument count is
        given, only the first count occurrences are replaced.
        Type:      method_descriptor

◆ ◆ ◆

4.在notebok里作图

在notebook里作图,有多个选择:

- matplotlib (事实标准)(http://matplotlib.org/),可通过%matplotlib inline 激活,(https://www.dataquest.io/blog/matplotlib-tutorial/) - %matplotlib notebook 提供交互性操作,但可能会有点慢,因为响应是在服务器端完成的。 - mpld3(https://github.com/mpld3/mpld3) 提供matplotlib代码的替代性呈现(通过d3),虽然不完整,但很好。 - bokeh(http://bokeh.pydata.org/en/latest/) 生成可交互图像的更好选择。 - plot.ly(https://plot.ly/) 可以生成非常好的图,可惜是付费服务。

◆ ◆ ◆

5.Jupyter Magic命令

上文提到的%matplotlib inline 是Jupyter Magic命令之一。

推荐阅读Jupyter magic命令的相关文档

(http://ipython.readthedocs.io/en/stable/interactive/magics.html),它一定会对你很有帮助。下面是我最爱的几个:

◆ ◆ ◆

6.Jupyter Magic-%env:设置环境变量

不必重启jupyter服务器进程,也可以管理notebook的环境变量。有的库(比如theano)使用环境变量来控制其行为,%env是最方便的途径。

In [55]:    # Running %env without any arguments
            # lists all environment variables

            # The line below sets the environment
            # variable OMP_NUM_THREADS
            %env OMP_NUM_THREADS=4

            env: OMP_NUM_THREADS=4

◆ ◆ ◆

7.Jupyter Magic-%run:运行python代码

%run 可以运行.py格式的python代码——这是众所周知的。不那么为人知晓的事实是它也可以运行其它的jupyter notebook文件,这一点很有用。

注意:使用%run 与导入一个python模块是不同的。

In [56]:    # this will execute and show the output from
            # all code cells of the specified notebook
            %run ./two-histograms.ipynb

◆ ◆ ◆

8.Jupyter Magic-%load:从外部脚本中插入代码

该操作用外部脚本替换当前cell。可以使用你的电脑中的一个文件作为来源,也可以使用URL。

In [ ]:     # Before Running
            %load ./hello_world.py
In [61]:    # After Running
            # %load ./hello_world.py
            if __name__ == "__main__":
                print("Hello World!")

            Hello World!

◆ ◆ ◆

9.Jupyter Magic-%store:在notebook文件之间传递变量

%store 命令可以在两个notebook文件之间传递变量。

In [62]:    data = 'this is the string I want to pass to different notebook'
            %store data
            del data # This has deleted the variable

            Stored 'data' (str)

现在,在一个新的notebook文档里……

In [1]: %store -r data
        print(data)

        this is the string I want to pass to different notebook

◆ ◆ ◆

10.Jupyter Magic-%who:列出所有的全局变量

不加任何参数, %who 命令可以列出所有的全局变量。加上参数 str 将只列出字符串型的全局变量。

In [1]: one = "for the money"
        two = "for the show"
        three = "to get ready now go cat go" 
        %who str

        one  three   two    

◆ ◆ ◆

11.Jupyter Magic-计时

有两种用于计时的jupyter magic命令: %%time 和 %timeit.当你有一些很耗时的代码,想要查清楚问题出在哪时,这两个命令非常给力。

仔细体会下我的描述哦。

%%time 会告诉你cell内代码的单次运行时间信息。

In [4]: %%time
        import time
        for _ in range(1000):
            time.sleep(0.01)# sleep for 0.01 seconds

        CPU times: user 21.5 ms, sys: 14.8 ms, total: 36.3 ms
        Wall time: 11.6 s

%%timeit 使用了Python的 timeit 模块,该模块运行某语句100,000次(默认值),然后提供最快的3次的平均值作为结果。

In [3]: import numpy
        %timeit numpy.random.normal(size=100)

        The slowest run took 7.29 times longer than the fastest. This could mean that an intermediate result is being cached.
        100000 loops, best of 3: 5.5 µs per loop

◆ ◆ ◆

12.Jupyter Magic-writefile and %pycat:导出cell内容/显示外部脚本的内容

使用%%writefile magic可以保存cell的内容到外部文件。 而%pycat功能相反,把外部文件语法高亮显示(以弹出窗方式)。

In [7]: %%writefile pythoncode.py

        import numpy
        def append_if_not_exists(arr, x):
            if x not in arr:
                arr.append(x)

        def some_useless_slow_function():
            arr = list()
            for i in range(10000):
                x = numpy.random.randint(0, 10000)
                append_if_not_exists(arr, x)

        Writing pythoncode.py

In [8]: %pycat pythoncode.py

        import numpy
        def append_if_not_exists(arr, x):
            if x not in arr:
                arr.append(x)

        def some_useless_slow_function():
            arr = list()
            for i in range(10000):
                x = numpy.random.randint(0, 10000)
                append_if_not_exists(arr, x)

◆ ◆ ◆

13.Jupyter Magic-%prun:告诉你程序中每个函数消耗的时间

使用%prun+函数声明会给你一个按顺序排列的表格,显示每个内部函数的耗时情况,每次调用函数的耗时情况,以及累计耗时。

In [47]:    %prun some_useless_slow_function()

         26324 function calls in 0.556 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    10000    0.527    0.000    0.528    0.000 <ipython-input-46-b52343f1a2d5>:2(append_if_not_exists)
    10000    0.022    0.000    0.022    0.000 {method 'randint' of 'mtrand.RandomState' objects}
        1    0.006    0.006    0.556    0.556 <ipython-input-46-b52343f1a2d5>:6(some_useless_slow_function)
     6320    0.001    0.000    0.001    0.000 {method 'append' of 'list' objects}
        1    0.000    0.000    0.556    0.556 <string>:1(<module>)
        1    0.000    0.000    0.556    0.556 {built-in method exec}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

◆ ◆ ◆

14.Jupyter Magic-用%pdb调试程序

Jupyter 有自己的调试界面The Python Debugger (pdb)(https://docs.python.org/3.5/library/pdb.html),使得进入函数内部检查错误成为可能。

Pdb中可使用的命令见链接(https://docs.python.org/3.5/library/pdb.html#debugger-commands)

In [ ]: %pdb

        def pick_and_take():
            picked = numpy.random.randint(0, 1000)
            raise NotImplementedError()

        pick_and_take()
        Automatic pdb calling has been turned ON
        ---------------------------------------------------------------------------
        NotImplementedError                       Traceback (most recent call last)
        <ipython-input-24-0f6b26649b2e> in <module>()
              5     raise NotImplementedError()
              6 
        ----> 7 pick_and_take()

        <ipython-input-24-0f6b26649b2e> in pick_and_take()
              3 def pick_and_take():
              4     picked = numpy.random.randint(0, 1000)
        ----> 5     raise NotImplementedError()
              6 
              7 pick_and_take()

        NotImplementedError: 
        > <ipython-input-24-0f6b26649b2e>(5)pick_and_take()
              3 def pick_and_take():
              4     picked = numpy.random.randint(0, 1000)
        ----> 5     raise NotImplementedError()
              6 
              7 pick_and_take()

        ipdb> 

◆ ◆ ◆

15.末句函数不输出

有时候不让末句的函数输出结果比较方便,比如在作图的时候,此时,只需在该函数末尾加上一个分号即可。

In [4]: %matplotlib inline
        from matplotlib import pyplot as plt
        import numpy
        x = numpy.linspace(0, 1, 1000)**1.5
In [5]: # Here you get the output of the function
        plt.hist(x)
Out[5]:
        (array([ 216.,  126.,  106.,   95.,   87.,   81.,   77.,   73.,   71.,   68.]),
         array([ 0. ,  0.1,  0.2,  0.3,  0.4,  0.5,  0.6,  0.7,  0.8,  0.9,  1. ]),
         <a list of 10 Patch objects>)
In [6]: # By adding a semicolon at the end, the output is suppressed.
        plt.hist(x);

◆ ◆ ◆

16.运行Shell命令

在notebook内部运行shell命令很简单,这样你就可以看到你的工作文件夹里有哪些数据集。

In [7]: !ls *.csv

nba_2016.csv             titanic.csv
pixar_movies.csv         whitehouse_employees.csv

◆ ◆ ◆

17.用LaTex写公式

当你在一个Markdown单元格里写LaTex时,它将用MathJax呈现公式:如

$$ P(A \mid B) = \frac{P(B \mid A) , P(A)}{P(B)} $$

会变成

◆ ◆ ◆

18.在notebook内用不同的内核运行代码

如果你想要,其实可以把不同内核的代码结合到一个notebook里运行。

只需在每个单元格的起始,用Jupyter magics调用kernal的名称:

  • %%bash
  • %%HTML
  • %%python2
  • %%python3
  • %%ruby
  • %%perl In [6]: %%bash for i in {1..5} do echo "i is $i" done

            i is 1
            i is 2
            i is 3
            i is 4
            i is 5

◆ ◆ ◆

19.给Jupyter安装其他的内核

Jupyter的优良性能之一是可以运行不同语言的内核。下面以运行R内核为例说明:

简单的方法:通过Anaconda安装R内核

conda install -c r r-essentials

稍微麻烦的方法:手动安装R内核

如果你不是用Anaconda,过程会有点复杂,首先,你需要从CRAN安装R。

之后,启动R控制台,运行下面的语句:

install.packages(c('repr', 'IRdisplay', 'crayon', 'pbdZMQ', 'devtools'))
devtools::install_github('IRkernel/IRkernel')
IRkernel::installspec()  # to register the kernel in the current R installation

◆ ◆ ◆

20.在同一个notebook里运行R和Python

要这么做,最好的方法事安装rpy2(需要一个可以工作的R),用pip操作很简单:

pip install rpy2

然后,就可以同时使用两种语言了,甚至变量也可以在二者之间公用:

In [1]: %load_ext rpy2.ipython
In [2]: %R require(ggplot2)
Out[2]: array([1], dtype=int32)
In [3]: import pandas as pd
        df = pd.DataFrame({
                'Letter': ['a', 'a', 'a', 'b', 'b', 'b', 'c', 'c', 'c'],
                'X': [4, 3, 5, 2, 1, 7, 7, 5, 9],
                'Y': [0, 4, 3, 6, 7, 10, 11, 9, 13],
                'Z': [1, 2, 3, 1, 2, 3, 1, 2, 3]
            })
In [4]: %%R -i df
        ggplot(data = df) + geom_point(aes(x = X, y= Y, color = Letter, size = Z))

◆ ◆ ◆

21.用其他语言写函数

有时候numpy的速度有点慢,我想写一些更快的代码。

原则上,你可以在动态库里编译函数,用python来封装…

但是如果这个无聊的过程不用自己干,岂不更好?

你可以在cython或fortran里写函数,然后在python代码里直接调用。

首先,你要先安装:

!pip install cython fortran-magic 


In [ ]: %load_ext Cython
In [ ]: %%cython
        def myltiply_by_2(float x):
            return 2.0 * x
In [ ]: myltiply_by_2(23.)

我个人比较喜欢用Fortran,它在写数值计算函数时十分方便。更多的细节在(http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html)

In [ ]: %load_ext fortranmagic
In [ ]: %%fortran
        subroutine compute_fortran(x, y, z)
            real, intent(in) :: x(:), y(:)
            real, intent(out) :: z(size(x, 1))

            z = sin(x + y)

        end subroutine compute_fortran
In [ ]: compute_fortran([1, 2, 3], [4, 5, 6])

还有一些别的跳转系统可以加速python 代码。更多的例子见(http://arogozhnikov.github.io/2015/09/08/SpeedBenchmarks.html)

你可以在cython或fortran里写函数,然后在python代

◆ ◆ ◆

22.支持多指针

Jupyter支持多个指针同步编辑,类似Sublime Text编辑器。按下Alt键并拖拽鼠标即可实现。

◆ ◆ ◆

23.Jupyter外界拓展

Jupyter-contrib extensions(https://github.com/ipython-contrib/jupyter_contrib_nbextensions)是一些给予Jupyter更多更能的延伸程序,包括jupyter spell-checker和code-formatter之类.

下面的命令安装这些延伸程序,同时也安装一个菜单形式的配置器,可以从Jupyter的主屏幕浏览和激活延伸程序。

!pip install https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tarball/master
!pip install jupyter_nbextensions_configurator
!jupyter contrib nbextension install --user
!jupyter nbextensions_configurator enable --user

◆ ◆ ◆

24.从Jupyter notebook创建演示稿

Damian Avila的RISE(https://github.com/damianavila/RISE)允许你从已有的notebook创建一个powerpoint形式的演示稿。 你可以用conda来安装RISE:

conda install -c damianavila82 rise

或者用pip安装:

pip install RISE

然后运行下面的代码来安装和激活延伸程序:

jupyter-nbextension install rise --py --sys-prefix
jupyter-nbextension enable rise --py --sys-prefix

◆ ◆ ◆

25.Jupyter输出系统

Notebook本身以HTML的形式显示,单元格输出也可以是HTML形式的,所以你可以输出任何东西:视频/音频/图像。

这个例子是浏览我所有的图片,并显示前五张图的缩略图。

In [12]:    import os
            from IPython.display import display, Image
            names = [f for f in os.listdir('../images/ml_demonstrations/') if f.endswith('.png')]
            for name in names[:5]:
                display(Image('../images/ml_demonstrations/' + name, width=100))

我们也可以用bash命令创建一个相同的列表,因为magics和bash运行函数后返回的是python 变量:

In [10]:    names = !ls ../images/ml_demonstrations/*.png
            names[:5]
Out[10]:    ['../images/ml_demonstrations/colah_embeddings.png',
             '../images/ml_demonstrations/convnetjs.png',
             '../images/ml_demonstrations/decision_tree.png',
             '../images/ml_demonstrations/decision_tree_in_course.png',
             '../images/ml_demonstrations/dream_mnist.png']

◆ ◆ ◆

26.大数据分析

很多方案可以解决查询/处理大数据的问题:

◆ ◆ ◆

27.分享notebook

分享notebook最方便的方法是使用notebook文件(.ipynb),但是对那些不使用notebook的人,你还有这些选择:

你的最爱是哪些?

在评论里告诉我哪些是你的最爱小窍门吧!

原文发布于微信公众号 - 大数据文摘(BigDataDigest)

原文发表时间:2016-11-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏liuchengxu

[译]27个Jupyter Notebook小提示与技巧

Jupyter notebook, 前身是 IPython notebook, 它是一个非常灵活的工具,有助于帮助你构建很多可读的分析,你可以在里面同时保留代码...

2892
来自专栏IT开发技术与工作效率

Redis 全中文总结

3274
来自专栏积累沉淀

Java批处理

批处理 JDBC对批处理的操作,首先简单说一下JDBC操作sql语句的简单机制。 JDBC执行数据库操作语句,首先需要将sql语句打包成为网络字...

4785
来自专栏农夫安全

代码审计之命名执行漏洞

环境:windows + apache + mysql + php (phpstudy) 由于是在Windows下进行的测试,所以和Linux下的测试会有所不...

2976
来自专栏老九学堂

【面试】找工作必看的十道XML面试题

XML并不依赖于其他编程语言,与SQL一样是编程人员所必备的技能之一,因此在任何技术工作面试之前准备一些XML问题都是很有意义的。老九君为大家整合了十道有关XM...

4607
来自专栏农夫安全

代码审计之命令执行漏洞

环境:windows + apache + mysql + php (phpstudy) 由于是在Windows下进行的测试,所以和Linux下的测试会有所不...

2866
来自专栏雨尘分享

2018 - iOS 面试题汇总一般面试题BAT面试题

4.6K3
来自专栏有趣的django

面试题目及答案

1 Python的函数参数传递 看两个例子: a = 1 def fun(a): a = 2 fun(a) print a # 1 a = [] de...

1.2K9
来自专栏何俊林

阿里、华为、腾讯Java技术面试题精选

1855
来自专栏JAVA高级架构

Java阿里面试题

3531

扫码关注云+社区

领取腾讯云代金券