学习
实践
活动
专区
工具
TVP
写文章
专栏首页专知【论文推荐】最新六篇聊天机器人相关论文—弱监督信息、内容驱动、对话管理系统、可扩展情感序列到序列、自主性

【论文推荐】最新六篇聊天机器人相关论文—弱监督信息、内容驱动、对话管理系统、可扩展情感序列到序列、自主性

【导读】专知内容组整理了最近六篇聊天机器人(Chatbot)相关文章,为大家进行介绍,欢迎查看!

1. Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots(利用弱监督信息学习匹配模型以实现基于检索的聊天机器人的响应选择)



作者:Yu Wu,Wei Wu,Zhoujun Li,Ming Zhou

accepted by ACL 2018 as a short paper

机构:Beihang University, Microsoft Research

摘要:We propose a method that can leverage unlabeled data to learn a matching model for response selection in retrieval-based chatbots. The method employs a sequence-to-sequence architecture (Seq2Seq) model as a weak annotator to judge the matching degree of unlabeled pairs, and then performs learning with both the weak signals and the unlabeled data. Experimental results on two public data sets indicate that matching models get significant improvements when they are learned with the proposed method.

期刊:arXiv, 2018年5月7日

网址

http://www.zhuanzhi.ai/document/c08d5aaf08a1e82547380d311740afc5

2. Sounding Board: A User-Centric and Content-Driven Social Chatbot(Sounding Board:用户为中心内容驱动的社交聊天机器人)



作者:Hao Fang,Hao Cheng,Maarten Sap,Elizabeth Clark,Ari Holtzman,Yejin Choi,Noah A. Smith,Mari Ostendorf

NAACL 2018

机构:University of Washington

摘要:We present Sounding Board, a social chatbot that won the 2017 Amazon Alexa Prize. The system architecture consists of several components including spoken language processing, dialogue management, language generation, and content management, with emphasis on user-centric and content-driven design. We also share insights gained from large-scale online logs based on 160,000 conversations with real-world users.

期刊:arXiv, 2018年4月26日

网址

http://www.zhuanzhi.ai/document/f472bfcd8af4449a5213d8e50a2bccfd

3. Improv Chat: Second Response Generation for Chatbot



作者:Furu Wei

机构:Microsoft Research Asia

摘要:Existing research on response generation for chatbot focuses on \textbf{First Response Generation} which aims to teach the chatbot to say the first response (e.g. a sentence) appropriate to the conversation context (e.g. the user's query). In this paper, we introduce a new task \textbf{Second Response Generation}, termed as Improv chat, which aims to teach the chatbot to say the second response after saying the first response with respect the conversation context, so as to lighten the burden on the user to keep the conversation going. Specifically, we propose a general learning based framework and develop a retrieval based system which can generate the second responses with the users' query and the chatbot's first response as input. We present the approach to building the conversation corpus for Improv chat from public forums and social networks, as well as the neural networks based models for response matching and ranking. We include the preliminary experiments and results in this paper. This work could be further advanced with better deep matching models for retrieval base systems or generative models for generation based systems as well as extensive evaluations in real-life applications.

期刊:arXiv, 2018年5月10日

网址

http://www.zhuanzhi.ai/document/02208768d2bbeb287f103e33466ee06c

4. An Ontology-Based Dialogue Management System for Banking and Finance Dialogue Systems(用于银行和金融对话的基于本体的对话管理系统)



作者:Duygu Altinok

机构:4Com Innovation Center

摘要:Keeping the dialogue state in dialogue systems is a notoriously difficult task. We introduce an ontology-based dialogue manage(OntoDM), a dialogue manager that keeps the state of the conversation, provides a basis for anaphora resolution and drives the conversation via domain ontologies. The banking and finance area promises great potential for disambiguating the context via a rich set of products and specificity of proper nouns, named entities and verbs. We used ontologies both as a knowledge base and a basis for the dialogue manager; the knowledge base component and dialogue manager components coalesce in a sense. Domain knowledge is used to track Entities of Interest, i.e. nodes (classes) of the ontology which happen to be products and services. In this way we also introduced conversation memory and attention in a sense. We finely blended linguistic methods, domain-driven keyword ranking and domain ontologies to create ways of domain-driven conversation. Proposed framework is used in our in-house German language banking and finance chatbots. General challenges of German language processing and finance-banking domain chatbot language models and lexicons are also introduced. This work is still in progress, hence no success metrics have been introduced yet.

期刊:arXiv, 2018年4月13日

网址

http://www.zhuanzhi.ai/document/84d12f7e1fd1910373748ea1c5bde87f

5. Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis(基于可扩展情感序列到序列聊天机器人响应的性能分析)



作者:Chih-Wei Lee,Yau-Shian Wang,Tsung-Yuan Hsu,Kuan-Yu Chen,Hung-Yi Lee,Lin-shan Lee

机构:National Taiwan University

摘要:Conventional seq2seq chatbot models only try to find the sentences with the highest probabilities conditioned on the input sequences, without considering the sentiment of the output sentences. Some research works trying to modify the sentiment of the output sequences were reported. In this paper, we propose five models to scale or adjust the sentiment of the chatbot response: persona-based model, reinforcement learning, plug and play model, sentiment transformation network and cycleGAN, all based on the conventional seq2seq model. We also develop two evaluation metrics to estimate if the responses are reasonable given the input. These metrics together with other two popularly used metrics were used to analyze the performance of the five proposed models on different aspects, and reinforcement learning and cycleGAN were shown to be very attractive. The evaluation metrics were also found to be well correlated with human evaluation.

期刊:arXiv, 2018年4月7日

网址

http://www.zhuanzhi.ai/document/4d8fffd30b46c6945ea8bc2682c2527b

6. On Chatbots Exhibiting Goal-Directed Autonomy in Dynamic Environments(动态环境中聊天机器人如何展示面向目标的自主性)



作者:Biplav Srivastava

机构:IBM Research

摘要:Conversation interfaces (CIs), or chatbots, are a popular form of intelligent agents that engage humans in task-oriented or informal conversation. In this position paper and demonstration, we argue that chatbots working in dynamic environments, like with sensor data, can not only serve as a promising platform to research issues at the intersection of learning, reasoning, representation and execution for goal-directed autonomy; but also handle non-trivial business applications. We explore the underlying issues in the context of Water Advisor, a preliminary multi-modal conversation system that can access and explain water quality data.

期刊:arXiv, 2018年3月27日

网址

http://www.zhuanzhi.ai/document/441588db5c34c07e5584affd0c319b24

-END-

文章分享自微信公众号:
专知

本文参与 腾讯云自媒体分享计划 ,欢迎热爱写作的你一起参与!

作者:专知内容组
原始发表时间:2018-05-12
如有侵权,请联系 cloudcommunity@tencent.com 删除。
登录 后参与评论
0 条评论

相关文章

  • ACL 2019 | 使用元词改进自然语言生成

    本文将对 ACL2019论文《Neural Response Generation with Meta-Words》进行解读,这篇论文提出的方法可以“显式”地表...

    AI科技评论
  • 最新中文NLP开源工具箱来了!支持6大任务,面向工业应用 | 资源

    对于开发者来说,又有一个新的NLP工具箱可以使用了,代号PaddleNLP,目前已开源。

    量子位
  • 哈工大-腾讯联合实验室亮相国际学术会议COLING 2016

    小Q在COLING: COLING,The International Conference on Computational Linguistics,国际计算...

    腾讯高校合作
  • 最新中文NLP开源工具箱来了!支持6大任务,面向工业应用 | 资源

    对于开发者来说,又有一个新的NLP工具箱可以使用了,代号PaddleNLP,目前已开源。

    深度学习与Python
  • 资源 | 最新中文NLP开源工具箱来了!支持6大任务,面向工业应用

    对于开发者来说,又有一个新的NLP工具箱可以使用了,代号PaddleNLP,目前已开源。

    代码医生工作室
  • 重磅!一文彻底读懂智能对话系统!当前研究综述和未来趋势

    作者:蒙 康 编辑:王抒伟 笔者在最近的研究中发现了一篇非常好的有关对话系统的论文,《A Survey on Dialogue Systems:Recent...

    机器学习算法工程师
  • 强烈推荐| 飞桨十大中文NLP开源工具详解

    PaddleNLP是基于飞桨(PaddlePaddle)开发的工业级中文NLP开源工具与预训练模型集,将自然语言处理领域的多种模型用一套共享骨架代码实现,可大大...

    用户1386409
  • 基于神经网络的智能对话系统(一)——介绍

    开发一个智能对话系统1,不仅模仿人类对话,而且回答有关电影明星的最新新闻到爱因斯坦相对论等主题的问题,并完成旅行计划等复杂任务,是目前运行时间最长的目标之一。 ...

    小爷毛毛_卓寿杰
  • NeurIPS2022 | 基于 “情感分析” 的推荐行为预判

     一些大的产品公司,都有自己的客户支持。当你打电话/对话完成之后,经常会被问及“你有多大可能将我们推荐给你的朋友或家人?”。产品公司做这样做主要是评估自己的服务...

    ShuYini
  • 做项目一定用得到的NLP资源【分类版】

    原文链接:https://github.com/fighting41love/funNLP

    流川疯
  • EMNLP 2018 今日开幕!3 大亮点逐个看

    AI 科技评论按:作为自然语言处理领域的顶级会议之一,EMNLP 2018 今日在比利时首都布鲁塞尔正式召开。10 月 31 日至 11 月 1 日为 Tuto...

    AI科技评论
  • 哈尔滨工业大学刘挺:独家解读人机对话技术的进展 | CCF-GAIR

    AI 科技评论按:2017 年 7 月 8 日,由中国计算机学会(CCF)主办,雷锋网与香港中文大学(深圳)承办的全球人工智能与机器人峰会(CCF-GAIR)进...

    AI科技评论
  • 一份不可多得的自然语言处理资源清单

    自然语言处理(Natural Langauge Processing,NLP)是计算机系统理解人类语言的一种能力,它也是人工智能(AI)的子集。NLP在很多...

    用户3578099
  • 哈工大刘挺:哈工大 SCIR 实验室的 NLP 研究 | CCF-GAIR

    雷锋网 AI 研习社按:近期由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办的全球人工智能与机器人峰会(CCF-GAIR)将于 6 月底在深圳举...

    AI研习社
  • 哈工大刘挺:哈工大SCIR实验室的NLP研究 | CCF-GAIR

    全球人工智能与机器人峰会(CCF-GAIR)将于 6 月底在深圳举办,其中哈尔滨工业大学刘挺教授 将担任自然语言处理专场主席。

    AI科技评论
  • AI说话也有小情绪!Meta AI连发三篇Textless NLP论文:语音生成的终极答案?

    ---- 新智元报道   编辑:LRS 【新智元导读】AI语音生成的特点就是呆板,没有情绪的起伏。最近Meta AI连发了三篇Textless NLP的论...

    新智元
  • IEEE智能系统10大AI青年科学家公布:南大俞扬、腾讯AI Lab刘威入选

    机器之心

扫码关注腾讯云开发者

领取腾讯云代金券