前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow架构与设计:会话生命周期

TensorFlow架构与设计:会话生命周期

作者头像
用户1737318
发布2018-06-06 15:33:12
1.3K0
发布2018-06-06 15:33:12
举报
文章被收录于专栏:人工智能头条人工智能头条

作者:刘光聪 ,中兴通讯高级系统架构师,专注机器学习算法,分布式系统架构与优化。 原文:TensorFlow架构与设计:会话生命周期(http://www.jianshu.com/p/667cbb20d802) 责编:王艺 CSDN AI记者,投稿、寻求报道、深入交流请邮件wangyi@csdn.net或扫描文末二维码添加微信。 相关文章: 图解TensorFlow架构与设计 TensorFlow架构与设计:图模块

TensorFlow的系统结构以C API为界,将整个系统分为「前端」和「后端」两个子系统:

  • 前端系统:提供编程模型,负责构造计算图;
  • 后端系统:提供运行时环境,负责执行计算图。

系统架构

前端系统主要扮演Client的角色,主要负责计算图的构造,并管理Session生命周期过程。

前端系统是一个支持多语言的编程环境,并提供统一的编程模型支撑用户构造计算图。Client通过Session,连接TensorFlow后端的「运行时」,启动计算图的执行过程。

后端系统是TensorFlow的运行时系统,主要负责计算图的执行过程,包括计算图的剪枝,设备分配,子图计算等过程。

本文首先以Session创建为例,揭示前端Python与后端C/C++系统实现的通道,阐述TensorFlow多语言编程的奥秘。随后,以Python前端,C API桥梁,C++后端为生命线,阐述Session的生命周期过程。

Swig: 幕后英雄

前端多语言编程环境与后端C/C++实现系统的通道归功于Swig的包装器。TensorFlow使用Bazel的构建工具,在编译之前启动Swig的代码生成过程,通过tf_session.i自动生成了两个适配(Wrapper)文件:

  • pywrap_tensorflow.py: 负责对接上层Python调用;
  • pywrap_tensorflow.cpp: 负责对接下层C实现。

此外,pywrap_tensorflow.py模块首次被加载时,自动地加载_pywrap_tensorflow.so的动态链接库。从而实现了pywrap_tensorflow.py到pywrap_tensorflow.cpp的函数调用关系。

在pywrap_tensorflow.cpp的实现中,静态注册了一个函数符号表。在运行时,按照Python的函数名称,匹配找到对应的C函数实现,最终转调到c_api.c的具体实现。

Swig代码生成器

编程接口:Python

当Client要启动计算图的执行过程时,先创建了一个Session实例,进而调用父类BaseSession的构造函数。

# tensorflow/python/client/session.py
class Session(BaseSession):
  def __init__(self, target='', graph=None, config=None):
    super(Session, self).__init__(target, graph, config=config)
    # ignoring others

在BaseSession的构造函数中,将调用pywrap_tensorflow模块中的函数。其中,pywrap_tensorflow模块自动由Swig生成。

# tensorflow/python/client/session.py
from tensorflow.python import pywrap_tensorflow as tf_session

class BaseSession(SessionInterface):
  def __init__(self, target='', graph=None, config=None):
    self._session = None
    opts = tf_session.TF_NewSessionOptions(target=self._target, config=config)
    try:
      with errors.raise_exception_on_not_ok_status() as status:
        self._session = tf_session.TF_NewDeprecatedSession(opts, status)
    finally:
      tf_session.TF_DeleteSessionOptions(opts)
    # ignoring others

生成代码:Swig

pywrap_tensorflow.py

在pywrap_tensorflow模块中,通过_pywrap_tensorflow将在_pywrap_tensorflow.so中调用对应的C++函数实现。

# tensorflow/bazel-bin/tensorflow/python/pywrap_tensorflow.py
def TF_NewDeprecatedSession(arg1, status):
    return _pywrap_tensorflow.TF_NewDeprecatedSession(arg1, status)

pywrap_tensorflow.cpp

在pywrap_tensorflow.cpp的具体实现中,它静态注册了函数调用的符号表,实现Python的函数名称到C++实现函数的具体映射。

# tensorflow/bazel-bin/tensorflow/python/pywrap_tensorflow.cpp
static PyMethodDef SwigMethods[] = {
    ...
     {"TF_NewDeprecatedSession", _wrap_TF_NewDeprecatedSession, METH_VARARGS, NULL},
}

PyObject *_wrap_TF_NewDeprecatedSession(
  PyObject *self, PyObject *args) {
  TF_SessionOptions* arg1 = ... 
  TF_Status* arg2 = ...

  TF_DeprecatedSession* result = TF_NewDeprecatedSession(arg1, arg2);
  // ignoring others implements
}

最终,自动生成的pywrap_tensorflow.cpp仅仅负责函数调用的转发,最终将调用底层C系统向上提供的API接口。

C API:桥梁

c_api.h是TensorFlow的后端执行系统面向前端开放的公共API接口之一,自此将进入TensorFlow后端系统的浩瀚天空。

// tensorflow/c/c_api.c
TF_DeprecatedSession* TF_NewDeprecatedSession(
  const TF_SessionOptions*, TF_Status* status) {
  Session* session;
  status->status = NewSession(opt->options, &session);
  if (status->status.ok()) {
    return new TF_DeprecatedSession({session});
  } else {
    return NULL;
  }
}

后端系统:C++

NewSession将根据前端传递的Session.target,使用SessionFactory多态创建不同类型的Session(C++)对象。

Status NewSession(const SessionOptions& options, Session** out_session) {
  SessionFactory* factory;
  Status s = SessionFactory::GetFactory(options, &factory);
  if (!s.ok()) {
    *out_session = nullptr;
    LOG(ERROR) << s;
    return s;
  }
  *out_session = factory->NewSession(options);
  if (!*out_session) {
    return errors::Internal("Failed to create session.");
  }
  return Status::OK();
}

会话生命周期

下文以前端Python,桥梁C API,后端C++为生命线,理顺三者之间的调用关系,阐述Session的生命周期过程。

在Python前端,Session的生命周期主要体现在:

  • 创建Session(target)
  • 迭代执行Session.run(fetches, feed_dict)
    • Session._extend_graph(graph)
    • Session.TF_Run(feeds, fetches, targets)
  • 关闭Session
  • 销毁Session
sess = Session(target)
for _ in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
sess.close()

相应地,C++后端,Session的生命周期主要体现在:

  • 根据target多态创建Session
  • Session.Create(graph):有且仅有一次
  • Session.Extend(graph):零次或多次
  • 迭代执行Session.Run(inputs, outputs, targets)
  • 关闭Session.Close
  • 销毁Session对象
// create/load graph ...
tensorflow::GraphDef graph;

// local runtime, target is ""
tensorflow::SessionOptions options;

// create Session
std::unique_ptr<tensorflow::Session> 
sess(tensorflow::NewSession(options));

// create graph at initialization.
tensorflow::Status s = sess->Create(graph);
if (!s.ok()) { ... }

// run step
std::vector<tensorflow::Tensor> outputs;
s = session->Run(
  {},               // inputs is empty 
  {"output:0"},     // outputs names
  {"update_state"}, // target names
  &outputs);        // output tensors
if (!s.ok()) { ... }

// close
session->Close();

创建会话

上文介绍了Session创建的详细过程,从Python前端为起点,通过Swig自动生成的Python-C++的包装器为媒介,实现了Python到TensorFlow的C API的调用。

其中,C API是前端系统与后端系统的分水岭。后端C++系统根据前端传递的Session.target,使用SessionFactory多态创建Session(C++)对象。

创建会话

从严格的角色意义上划分,GrpcSession依然扮演了Client的角色。它使用target,通过RPC协议与Master建立通信连接,因此,GrpcSession同时扮演了RPC Client的角色。

Session多态创建

创建/扩展图

随后,Python前端将调用Session.run接口,将构造好的计算图,以GraphDef的形式发送给C++后端。

其中,前端每次调用Session.run接口时,都会试图将新增节点的计算图发送给后端系统,以便后端系统将新增节点的计算图Extend到原来的计算图中。特殊地,在首次调用Session.run时,将发送整个计算图给后端系统。

后端系统首次调用Session.Extend时,转调(或等价)Session.Create;以后,后端系统每次调用Session.Extend时将真正执行Extend的语义,将新增的计算图的节点追加至原来的计算图中。

随后,后端将启动计算图执行的准备工作。

创建/扩展图

迭代运行

接着,Python前端Session.run实现将Feed, Fetch列表准备好,传递给后端系统。后端系统调用Session.Run接口。

后端系统的一次Session.Run执行常常被称为一次Step,Step的执行过程是TensorFlow运行时的核心。

每次Step,计算图将正向计算网络的输出,反向传递梯度,并完成一次训练参数的更新。首先,后端系统根据Feed, Fetch,对计算图(常称为Full Graph)进行剪枝,得到一个最小依赖的计算子图(常称为Client Graph)。

然后,运行时启动设备分配算法,如果节点之间的边横跨设备,则将该边分裂,插入相应的Send与Recv节点,实现跨设备节点的通信机制。

随后,将分裂出来的子图片段(常称为Partition Graph)注册到相应的设备上,并在本地设备上启动子图片段的执行过程。

Run Step

关闭会话

当计算图执行完毕后,需要关闭Session,以便释放后端的系统资源,包括队列,IO等。会话关闭流程较为简单,如下图所示。

关闭会话

销毁会话

最后,会话关闭之后,Python前端系统启动GC,当Session.del被调用后,启动后台C++的Session对象销毁过程。

销毁会话

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-03-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
灰盒安全测试
腾讯知识图谱(Tencent Knowledge Graph,TKG)是一个集成图数据库、图计算引擎和图可视化分析的一站式平台。支持抽取和融合异构数据,支持千亿级节点关系的存储和计算,支持规则匹配、机器学习、图嵌入等图数据挖掘算法,拥有丰富的图数据渲染和展现的可视化方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档