IJCAI 2018 | 腾讯知文团队3篇入选论文解读

备受关注的人工智能领域顶级国际会议IJCAI,2018年将于7月13日至19日在瑞典斯德哥尔摩举行。IJCAI-ECAI 2018, the27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence 是国际AI领域研究内容全面、最具影响力的顶级学术会议之一。在近日揭晓2018年收录论文名单中,腾讯知文团队有3篇一作长文被录取,我们将对文章进行简要解读,欢迎交流讨论。

腾讯知文团队介绍

腾讯知文是SNG数据中心的NLP团队,目前专注于问答与对话领域,服务与支持的产品包括腾讯云小微机器人、腾讯云金融智能客服、腾讯云内容理解等。基于语义分析、知识计算、机器阅读理解等技术,知文团队在语言智能的求知之路持续探索,同时通过腾讯云提供专业的产品与服务,为更多的业务实践赋能AI。知文致力于打造业界下一代智能问答平台,深度融合KBQA、DocQA、TaskQA等多种问答模式。问答是搜索的进化形式,加入我们,加入1998年的Google。

腾讯知文团队3篇入选论文解读

1.PLASTIC:基于生成对抗网络调节推荐系统里全局和局部信息的互补性

PLASTIC: PrioritizeLong and Short-term Information in Top-n Recommendation using AdversarialTraining

本文由腾讯知文团队与中科院深圳先进技术研究院等高校联合完成。传统的基于协同过滤的推荐系统是认为用户偏好和电影属性都是静态的,但他们实质是随着用时间的推移而缓慢变化的。例如,一个电影的受欢迎程度可能由外部事件(如获得奥斯卡奖)所改变。另一方面,随着深度学习应用的爆发式发展,基于深度学习的推荐系统越来越引发大家的关注。循环神经网络(RNN)理论上能够有效地对用户偏好和物品属性的动态性进行建模,基于当前的趋势,预测来的行为。为了有效地利用传统协同过滤推荐技术(i.e., 矩阵分解)和深度学习方法(i.e., 循环神经网络)各自的优点,捕获用户和电影之间的长期(全局)和短期(局部)关联,本文主要研究和探索基于生成对抗网络(GAN)调节矩阵分解(Matrix Factorization, MF)和循环神经网络(RNN)在推荐系统上的互补性。

2. 基于主题模型和强化学习的文本摘要

A ReinforcedTopic-Aware Convolutional Sequence-to-Sequence Model for Abstractive TextSummarization

本文由腾讯知文团队与苏黎世联邦理工学院(ETH)、美国哥伦比亚大学、腾讯AI lab联合完成。自动文本摘要方法一般有两种类型,分别为提取式和总结式。提取式方法通过选择重要的文本片段来生成摘要,更具可读性。总结式方法需要先“理解”文档,然后再组织并生成文本摘要,更灵活,目前更受关注,但可控制性和相关性有所欠缺。另一方面,近年来广泛应用的传统基于RNN的文本摘要模型存在exposure bias和难以并行化的问题。针对以上问题,该研究工作提出一种基于卷积神经网络的总结式文本摘要生成方法,并结合主题模型的注意力机制,利用强化学习方法进行优化。卷积神经网络具有可并行化的特点,可以提高训练速度。这是首次将基于主题模型的注意力机制引入自动文本摘要的生成,可以提高摘要结果的信息相关性和多样性。另一方面,self-critical强化学习方法的引入使模型可以针对摘要的评价指标进行优化,缓解训练和预测过程的exposure bias。

3. 基于多任务学习的图像描述自动生成

A Multi-task LearningApproach for Image Captioning

本文由腾讯知文团队与中科院深圳先进技术研究院、丰田工业大学芝加哥分校(TTIC)等高校联合完成。传统的基于编解码器的图像描述任务没有识别和定位多物体的能力,生成的文本经常遇到语言学问题,比如缺少成分、语法错误和论点矛盾等。特别是语言学问题,目前的测量方法是无法给出公正评价的。例如,“a group of people standing next to a.“和“agroup of people standing next a fire truck.”两个句子各项指标的分数差异不显著,但前者缺少名词性补语,让读者难以理解。本文采用多任务学习方法共享编解码器,同时提升编码器对物体的识别能力,以及减少解码器在生成文本过程中出现的语法错误。从离线、线上榜单和人工评测的结果来看,本文提出的方法有不错的性能表现。

原文发布于微信公众号 - 腾讯知文(tencent_wisdom)

原文发表时间:2018-04-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

3 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

数据挖掘中最易栽的11个大坑

按照Elder博士的总结,11大易犯错误:   1、缺乏数据   2、太关注训练   3、只依赖一项技术   4、提错了问题   5、只靠数据来说话   6...

2805
来自专栏量子位

像人一样脑补世界!DeepMind历时一年半搞出GQN,登上Science

1735
来自专栏AI科技评论

深度 | 能看图回答问题的AI离我们还有多远?Facebook向视觉对话进发

AI 科技评论按:Facebook AI 研究院(FAIR)日前撰写了一篇长文章,介绍了自己在基于图像的自然语言对话系统方面的研究方向以及现有的研究成果。 图像...

2716
来自专栏人工智能头条

深度学习成长的烦恼

791
来自专栏企鹅号快讯

监督学习越来越准,我为什么要写bandit问题

监督学习的典型场景 在涉猎bandit问题之前,监督学习是很好概括的: 步骤 1 刻画原始需求: 给用户推荐一道菜,结果只有两个:用户喜欢或者不喜欢 步骤 2 ...

1918
来自专栏新智元

【趋势】Yoshua Bengio: 机器的梦可以让我们实现无监督学习

【新智元导读】“让机器会做梦,从某种程度上来说,是人工智能发展的一个关键技能”,Bengio在接受O‘reilly的采访时说到。在这里,“做梦”代表的是想象的能...

4137
来自专栏AI科技评论

学界 | MIT周博磊团队:时序关系网络帮助计算机填补视频帧之间的空白

AI 科技评论按:如果你向一个人仅仅展示一段视频中的几帧,他通常可以推测出视频里发生的是什么事件以及屏幕上会显示出什么。例如,如果我们在视频开始时的帧中看到了一...

823
来自专栏镁客网

Yoshua Bengio 专栏文章:深度学习崛起带来人工智能的春天

1282
来自专栏新智元

UCSB研究发现计算机与人类视觉差异,用人眼搜索策略提升计算机视觉

【新智元导读】 加州大学圣巴巴拉分校的研究人员发现,当人类在寻找一个特定的物体时,经常容易看漏大小与场景的其余部分不相匹配的物体。他们研究这一现象,试图更好地理...

3387
来自专栏华章科技

人工智能、机器学习、深度学习,三者之间的同心圆关系

理解三者之间关系的最简便方法就是将它们视觉化为一组同心圆——首先是最大的部分人工智能——然后是后来兴旺的机器学习——最后是促使当下人工智能大爆发的深度学习——在...

794

扫码关注云+社区