IJCAI 2018 | 腾讯知文团队3篇入选论文解读

备受关注的人工智能领域顶级国际会议IJCAI,2018年将于7月13日至19日在瑞典斯德哥尔摩举行。IJCAI-ECAI 2018, the27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence 是国际AI领域研究内容全面、最具影响力的顶级学术会议之一。在近日揭晓2018年收录论文名单中,腾讯知文团队有3篇一作长文被录取,我们将对文章进行简要解读,欢迎交流讨论。

腾讯知文团队介绍

腾讯知文是SNG数据中心的NLP团队,目前专注于问答与对话领域,服务与支持的产品包括腾讯云小微机器人、腾讯云金融智能客服、腾讯云内容理解等。基于语义分析、知识计算、机器阅读理解等技术,知文团队在语言智能的求知之路持续探索,同时通过腾讯云提供专业的产品与服务,为更多的业务实践赋能AI。知文致力于打造业界下一代智能问答平台,深度融合KBQA、DocQA、TaskQA等多种问答模式。问答是搜索的进化形式,加入我们,加入1998年的Google。

腾讯知文团队3篇入选论文解读

1.PLASTIC:基于生成对抗网络调节推荐系统里全局和局部信息的互补性

PLASTIC: PrioritizeLong and Short-term Information in Top-n Recommendation using AdversarialTraining

本文由腾讯知文团队与中科院深圳先进技术研究院等高校联合完成。传统的基于协同过滤的推荐系统是认为用户偏好和电影属性都是静态的,但他们实质是随着用时间的推移而缓慢变化的。例如,一个电影的受欢迎程度可能由外部事件(如获得奥斯卡奖)所改变。另一方面,随着深度学习应用的爆发式发展,基于深度学习的推荐系统越来越引发大家的关注。循环神经网络(RNN)理论上能够有效地对用户偏好和物品属性的动态性进行建模,基于当前的趋势,预测来的行为。为了有效地利用传统协同过滤推荐技术(i.e., 矩阵分解)和深度学习方法(i.e., 循环神经网络)各自的优点,捕获用户和电影之间的长期(全局)和短期(局部)关联,本文主要研究和探索基于生成对抗网络(GAN)调节矩阵分解(Matrix Factorization, MF)和循环神经网络(RNN)在推荐系统上的互补性。

2. 基于主题模型和强化学习的文本摘要

A ReinforcedTopic-Aware Convolutional Sequence-to-Sequence Model for Abstractive TextSummarization

本文由腾讯知文团队与苏黎世联邦理工学院(ETH)、美国哥伦比亚大学、腾讯AI lab联合完成。自动文本摘要方法一般有两种类型,分别为提取式和总结式。提取式方法通过选择重要的文本片段来生成摘要,更具可读性。总结式方法需要先“理解”文档,然后再组织并生成文本摘要,更灵活,目前更受关注,但可控制性和相关性有所欠缺。另一方面,近年来广泛应用的传统基于RNN的文本摘要模型存在exposure bias和难以并行化的问题。针对以上问题,该研究工作提出一种基于卷积神经网络的总结式文本摘要生成方法,并结合主题模型的注意力机制,利用强化学习方法进行优化。卷积神经网络具有可并行化的特点,可以提高训练速度。这是首次将基于主题模型的注意力机制引入自动文本摘要的生成,可以提高摘要结果的信息相关性和多样性。另一方面,self-critical强化学习方法的引入使模型可以针对摘要的评价指标进行优化,缓解训练和预测过程的exposure bias。

3. 基于多任务学习的图像描述自动生成

A Multi-task LearningApproach for Image Captioning

本文由腾讯知文团队与中科院深圳先进技术研究院、丰田工业大学芝加哥分校(TTIC)等高校联合完成。传统的基于编解码器的图像描述任务没有识别和定位多物体的能力,生成的文本经常遇到语言学问题,比如缺少成分、语法错误和论点矛盾等。特别是语言学问题,目前的测量方法是无法给出公正评价的。例如,“a group of people standing next to a.“和“agroup of people standing next a fire truck.”两个句子各项指标的分数差异不显著,但前者缺少名词性补语,让读者难以理解。本文采用多任务学习方法共享编解码器,同时提升编码器对物体的识别能力,以及减少解码器在生成文本过程中出现的语法错误。从离线、线上榜单和人工评测的结果来看,本文提出的方法有不错的性能表现。

原文发布于微信公众号 - 腾讯知文(tencent_wisdom)

原文发表时间:2018-04-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏镁客网

技术 | AI研究的盲点:无解的神经网络内在逻辑

1406
来自专栏AI科技评论

学界 | 关于模型可解释性的深入思考:从哪里来,到哪里去?

「学习出一个通用智能行动者的潜力和局限性,算法公平方面细微的以及可以被真正规范化的挑战,以及现在的热门话题:能向人类解释、能被人类理解对模型来说意味着什么?」

903
来自专栏量子位

吴恩达的新深度学习课程什么样?我们试听了一下 | 附视频

问耕 发自 凹非寺 量子位 报道 | 公众号 QbitAI 注册之后,可以获得七天免费试听。不过在这之前,你首先需要输入一张信用卡/储蓄卡,或者Paypal账户...

4097
来自专栏大数据文摘

让冰冷的机器看懂这个多彩的世界

2929
来自专栏CreateAMind

浅析 Hinton 最近提出的 Capsule 计划

最近一次更新 17-09-22 15:00 (按中国时间计)。修复了一些笔误,加入了更多关于无监督学习的介绍内容,使思路更完整;以及一两句关于 Capsule ...

882
来自专栏新智元

【深度】申省梅颜水成团队获国际非受限人脸识别竞赛IJB-A冠军,主要负责人熊霖技术分享

作者:熊霖 赵健 徐炎 采访:闻菲 【新智元导读】开发出精确的和可扩展的无约束人脸识别算法,是生物识别和计算机视觉领域长期以来不断追求的目标。为了促进非受限...

4997
来自专栏AI科技评论

五大顶尖研究院的116篇ICLR 2018录用论文,七大趋势全解读

AI 科技评论按:时间过得好快,Yann LeCun 仿佛刚刚在 Twitter 上感慨 ICLR 2018 的参会人数比 2017 年再次翻倍,而现在 ICL...

1106
来自专栏新智元

【干货】生成对抗式网络创始人Quora答疑

【新智元导读】还记得不久前LeCun在Quora答题时说的,他最激动的深度学习进展是“生成对抗网络”吗?生成对抗网络的提出者Ian Goodfellow日前也在...

35812
来自专栏人工智能头条

ICML进行时|一文看尽获奖论文及Google、Facebook、微软、腾讯的最新科研成果

【导读】 ICML ( International Conference on Machine Learning),国际机器学习大会如今已发展为由国际机器学习学...

1262
来自专栏新智元

【再论深度学习必死】马库斯回应14大质疑,重申深度学习怀疑论

作者:Gary Marcus 翻译:新智元编辑部 【新智元导读】深度学习论战再起,NYT心理学家Gary Marcus如约写了一篇偏技术的文章,回应对他此前提出...

3284

扫码关注云+社区