前沿 | 通用句子语义编码器,谷歌在语义文本相似性上的探索

作者:Yinfei Yang

机器之心编译

参与:Pedro、蒋思源

近年来,基于神经网络的自然语言理解研究取得了快速发展(尤其是学习语义文本表示),这些深度方法给人们带来了全新的应用,且还可以帮助提高各种小数据集自然语言任务的性能。本文讨论了两篇关于谷歌语义表示最新进展的论文,以及两种可在 TensorFlow Hub 上下载的新模型。

语义文本相似度

在「Learning Semantic Textual Similarity from Conversations」这篇论文中,我们引入一种新的方式来学习语义文本相似的句子表示。直观的说,如果句子的回答分布相似,则它们在语义上是相似的。例如,「你多大了?」以及「你的年龄是多少?」都是关于年龄的问题,可以通过类似的回答,例如「我 20 岁」来回答。相比之下,虽然「你好吗?」和「你多大了?」包含的单词几乎相同,但它们的含义却大相径庭,所以对应的回答也相去甚远。

论文地址:https://arxiv.org/abs/1804.07754

如果句子可以通过相同的答案来回答,那么句子在语义上是相似的。否则,它们在语义上是不同的。

这项工作中,我们希望通过给回答分类的方式学习语义相似性:给定一个对话输入,我们希望从一批随机选择的回复中分类得到正确的答案。但是,任务的最终目标是学习一个可以返回表示各种自然语言关系(包括相似性和相关性)的编码模型。我们提出了另一预测任务(此处是指 SNLI 蕴含数据集),并通过共享的编码层同时推进两项任务。利用这种方式,我们在 STSBenchmark 和 CQA task B 等相似度度量标准上取得了更好的表现,究其原因,是简单等价关系与逻辑蕴含之间存在巨大不同,后者为学习复杂语义表示提供了更多可供使用的信息。

对于给定的输入,分类可以认为是一种对所有可能候选答案的排序问题。

通用句子编码器

「Universal Sentence Encoder」这篇论文介绍了一种模型,它通过增加更多任务来扩展上述的多任务训练,并与一个类似 skip-thought 的模型联合训练,从而在给定文本片段下预测句子上下文。然而,我们不使用原 skip-thought 模型中的编码器 - 解码器架构,而是使用一种只有编码器的模型,并通过共享编码器来推进预测任务。利用这种方式,模型训练时间大大减少,同时还能保证各类迁移学习任务(包括情感和语义相似度分类)的性能。这种模型的目的是为尽可能多的应用(释义检测、相关性、聚类和自定义文本分类)提供一种通用的编码器。

论文地址:https://arxiv.org/abs/1803.11175

成对语义相似性比较,结果为 TensorFlow Hub 通用句子编码器模型的输出。

正如文中所说,通用句子编码器模型的一个变体使用了深度平均网络(DAN)编码器,而另一个变体使用了更加复杂的自注意力网络架构 Transformer。

「Universal Sentence Encoder」一文中提到的多任务训练。各类任务及结构通过共享的编码层/参数(灰色框)进行连接。

随着其体系结构的复杂化,Transformer 模型在各种情感和相似度分类任务上的表现都优于简单的 DAN 模型,且在处理短句子时只稍慢一些。然而,随着句子长度的增加,使用 Transformer 的计算时间明显增加,但是 DAN 模型的计算耗时却几乎保持不变。

新模型

除了上述的通用句子编码器模型之外,我们还在 TensorFlow Hub 上共享了两个新模型:大型通用句型编码器通和精简版通用句型编码器。

  • 大型:https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder-large/1
  • 精简:https://www.tensorflow.org/hub/modules/google/universal-sentence-encoder-lite/1

这些都是预训练好的 Tensorflow 模型,给定长度不定的文本输入,返回一个语义编码。这些编码可用于语义相似性度量、相关性度量、分类或自然语言文本的聚类。

大型通用句型编码器模型是用我们介绍的第二篇文章中提到的 Transformer 编码器训练的。它针对需要高精度语义表示的场景,牺牲了速度和体积来获得最佳的性能。

精简版模型使用 Sentence Piece 词汇库而非单词进行训练,这使得模型大小显著减小。它针对内存和 CPU 等资源有限的场景(如小型设备或浏览器)。

我们很高兴与大家分享这项研究以及这些模型。这只是一个开始,并且仍然还有很多问题亟待解决,如将技术扩展到更多语言上(上述模型目前仅支持英语)。我们也希望进一步地开发这种技术,使其能够理解段落甚至整个文档。在实现这些目标的过程中,很有可能会产生出真正的「通用」编码器。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2018-05-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

读懂概率图模型:你需要从基本概念和参数估计开始

选自statsbot 作者:Prasoon Goyal 机器之心编译 参与:Panda 概率图模型是人工智能领域内一大主要研究方向。近日,Statsbot 团...

35411
来自专栏LhWorld哥陪你聊算法

【机器学习】--xgboost从初识到应用

在 Kaggle 的很多比赛中,我们可以看到很多 winner 喜欢用 xgboost,而且获得非常好的表现,今天就来看看 xgboost 到底是什么以及如何应...

1032
来自专栏机器之心

专访 | 监管机器翻译质量?且看阿里如何搭建翻译质量评估模型

阿里机器翻译团队在本次比赛中,参加了英语到德语和德语到英语两个语向的句子级别和词级别的七项质量评估任务,收获了六项世界冠军。其中,德语到英语的统计机器翻译评估任...

801
来自专栏AI启蒙研究院

【通俗理解】凸优化

1433
来自专栏新智元

NLP重磅!谷歌、Facebook新研究:2.26亿合成数据训练神经机器翻译创最优!

机器翻译依赖于大型平行语料库,即源语和目的语中成对句子的数据集。但是,双语语料是十分有限的,而单语语料更容易获得。传统上,单语语料被用于训练语言模型,大大提高了...

1012
来自专栏企鹅号快讯

一文读懂机器学习概率图模型

来源:机器之心 本文长度为10085字,建议阅读15分钟 本文结合基础应用示例系统性的为你讲解概率图模型。 概率图模型是人工智能领域内一大主要研究方向。近日,数...

2487
来自专栏机器之心

学界 | FAIR新一代无监督机器翻译:模型更简洁,性能更优

1636
来自专栏绿巨人专栏

强化学习读书笔记 - 08 - 规划式方法和学习式方法

39810
来自专栏人工智能LeadAI

学习资料参考:从深度学习到自然语言处理

注意:本文已经更新,新版结合深度学习简介和发展历程,给出了更详尽的学习资料参考。新版链接:深度学习简介与学习资料参考(http://peteryuan.net/...

3708
来自专栏Vamei实验室

概率论04 随机变量

我们了解了“样本空间”,“事件”,“概率”。样本空间中包含了一次实验所有可能的结果,事件是样本空间的一个子集,每个事件可以有一个发生的概率。概率是集合的一个“测...

1928

扫码关注云+社区