玩转 Jupyter Notebook

腾讯云提供了开发者实验室教你玩转 Jupyter Notebook,教程内容如下,用户可以点击开发者实验室快速上机完成实验。

安装 Jupyter Notebook

任务时间:20min

Jupyter Notebook 简介

Jupyter Notebook 是一个开源的 Web 应用程序,可以用来创建和共享包含动态代码、方程式、可视化及解释性文本的文档。

其应用于包括:数据整理与转换,数值模拟,统计建模,机器学习等等。

更多信息请见 官网

检查 Python 环境

CentOS 7.2 中默认集成了 Python 2.7,可以通过下面命令检查 Python 版本:

python --version

安装 pip

pip 是一个 Python 包管理工具,我们使用 yum 命令来安装该工具:

yum -y install python-pip

使用下面命令升级 pip 到最新版本:

pip install --upgrade pip

安装相关依赖

安装 Jupyter 过程中还需要其他一些依赖,我们使用以下命令安装他们:

yum -y groupinstall "Development Tools"
yum -y install python-devel

配置虚拟环境

安装 virtualenv

我们将为 Jupyter 创建一个独立的虚拟环境,与系统自带的 Python 隔离开来。为此,先安装 virtualenv 库:

pip install virtualenv

创建虚拟环境

创建一个专门的虚拟环境,并直接激活进入该环境:

virtualenv venv
source venv/bin/activate

使用 pip 安装 Jupyter

我们使用 pip 命令安装 Jupyter:

pip install jupyter

配置 Jupyter Notebook

任务时间:10min

建立项目目录

我们先为 Jupyter 相关文件准备一个目录:

mkdir /data/jupyter
cd /data/jupyter

再建立一个目录作为 Jupyter 运行的根目录:

mkdir /data/jupyter/root

准备密码密文

由于我们将以需要密码验证的模式启动 Jupyter,所以我们要预先生成所需的密码对应的密文。

生成密文

使用下面的命令,创建一个密文的密码:

python -c "import IPython;print IPython.lib.passwd()"

执行后需要输入并确认密码,然后程序会返回一个 'sha1:...' 的密文,我们接下来将会用到它。

修改配置

生成配置文件

我们使用 --generate-config 来参数生成默认配置文件:

jupyter notebook --generate-config --allow-root

生成的配置文件在 /root/.jupyter/ 目录下,可以点此编辑配置

修改配置

然后在配置文件最下方加入以下配置:

c.NotebookApp.ip = '*'
c.NotebookApp.allow_root = True
c.NotebookApp.open_browser = False
c.NotebookApp.port = 8888
c.NotebookApp.password = u'刚才生成的密文(sha:...)'
c.ContentsManager.root_dir = '/data/jupyter/root'

其中:

  • c.NotebookApp.password 请将上一步中密文填入此项,包括 sha: 部分。

你也可以直接配置或使用 Nginx 将服务代理到 80 或 443 端口。

启动 Jupyter Notebook

任务时间:10min

直接启动

使用以下指令启动 Jupyter Notebook:

jupyter notebook

此时,访问 http://<您的 CVM IP 地址>:8888 即可进入 Jupyter 首页。

创建 Notebook

  • 进入【首页】首先需要输入前面步骤中设置的密码。
  • 然后点击右侧的【 new 】,选择 Python2 新建一个 notebook,这时跳转至编辑界面。
  • 现在我们可以看到 /data/jupyter/root/ 目录中出现了一个 Untitled.ipynb 文件,这就是我们刚刚新建的 Notebook 文件。我们建立的所有 Notebook 都将默认以该类型的文件格式保存。

后台运行

直接以 jupyter notebook 命令启动 Jupyter 的方式在连接断开时将会中断,所以我们需要让 Jupyter 服务在后台常驻。

先按下 Ctrl + C 并输入 y 停止 Jupyter 服务,然后执行以下命令:

nohup jupyter notebook > /data/jupyter/jupyter.log 2>&1 &

该命令将使得 Jupyter 在后台运行,并将日志写在 /data/jupyter/jupyter.log 文件中。

准备后续步骤的 Notebook

为了后面实验中实验室的步骤检查器能够更好的工作,此时我们使用以下命令预先创建几份 ipynb 文件:

cd /data/jupyter/root
cp Untitled.ipynb first.ipynb
cp Untitled.ipynb matplotlib.ipynb
cp Untitled.ipynb tensorflow.ipynb
rm -f Untitled.ipynb

使用 Jupyter Notebook

任务时间:30min

  • 接下来的步骤中如遇到步骤检查未通过,请按下 Ctrl + S 保存,等待步骤检查器确认。

编辑界面

点击打开 first.ipynb 编辑界面。

Jupyter Notebook 的编辑界面主要由 工具栏内容编辑区 构成。

下方编辑区,由 Cell 组成。每个 notebook 由多个 Cell 构成,每个 Cell 都可以有不同的用途。

Code Cell

新建的 notebook 中包含一个代码 Cell(Code Cell),以 [ ] 开头,在该类型的 Cell 中,可以输入任意代码并执行。如输入:

1 + 1

然后按下 Shift + Enter 键, Cell 中代码就会被执行,光标也会移动至下个新 Cell 中。我们接着输入:

print('Hello Jupyter')

再次按下 Shift + Enter ,可以看到这次没有出现 Out[..] 这样的文字。这是因为我们只打印出来了某些值,而没有返回任何的值。

  • 按下 Ctrl + S 保存,等待步骤检查器确认。

Heading Cell *

新版本中已经没有独立的 Heading Cell,现在标题被整合在 Markdown Cell 之中。

如果我们想在顶部添加一个的标题。选中第一个 Cell,然后点击 Insert -> Insert Cell Above

你会发现,文档顶部马上就出现了一个新的 Cell。点击在工具栏中 Cell 类型(默认为 Code),将其变成 Markdown。接着在 Cell 中写下:

# My First Notebook

然后按下 Shift + Enter 键,便可以看到生成了一行一级标题。

  • 与 Markdown 语法相同,使用多个#将改变标题级别。

Markdown Cell

上一步中我们已经尝试了使用了 Markdown Cell。在该 Cell 中,除标题外其他语法同样支持。比如,我们在一个新的 Cell 中插入以下文本:

This is a **table**:

| Name | Value |
|:----:|:-----:|
|    A |     1 |
|    B |     2 |
|    C |     3 |

然后按下 Shift + Enter,即可渲染出相应内容。

高级用法 - HTML

Markdown Cell 中同样接受 HTML 代码。这样,你就可以实现更加丰富的样式及结构、添加图片等等。

例如,如果想在 notebook 中添加 Jupyter 的 logo,并且添加 2px 的黑色边框,放置在单元格左侧,可以这样编写:

<img src="http://jupyter.org/assets/nav_logo.svg" style="border: 2px solid black; float:left" />

然后按下 Shift + Enter,即可渲染出图片。

高级用法 - LaTex

Markdown Cell 还支持 LaTex 语法。在 Cell 中插入以下文本:

$$int_0^{+infty} x^2 dx$$

同样按下 Shift + Enter,即可渲染出公式。

导出

notebook 支持导出导出为 HTML、Markdown、PDF 等多种格式。

如点击 File -> Download as -> HTML(.html),即可下载到 HTML 版本的 notebook。

导出 PDF

其中,导出 PDF 需要其他包的支持,我们需要使用以下命令安装这些依赖:

yum -y install pandoc texlive-*
  • 注:直接导出 PDF 时 Jupyter 可能会忽略一些 Cell,建议先导出为 HTML,然后使用浏览器将其转为 PDF。

集成 Matplotlib(可选)

任务时间:30min

Matplotlib 是 Python 中最常用的可视化工具之一,可以非常方便地创建许多类型的 2D 图表和基本的 3D 图表。

安装 Matplotlib

我们使用 pip 来安装 Matplotlib:

pip install matplotlib

测试 Matplotlib

我们使用另一个 notebook (matplotlib.ipynb)来测试 Matplotlib。

点击打开 matplotlib.ipynb 编辑界面。

魔法命令

在第一个 Cell 中,我们插入并执行:

%matplotlib inline

这是指定 matplotlib 图表的显示方式的魔法命令。inline 表示将图表嵌入到 notebook 中。

测试

  • 关于 Matplotlib 的使用请移步其官网

在接下来 Cell 中,我们插入几个官方示例测试:

1.plot_bmh

示例代码:/plot_bmh.py
from numpy.random import beta
import matplotlib.pyplot as plt


plt.style.use('bmh')


def plot_beta_hist(ax, a, b):
    ax.hist(beta(a, b, size=10000), histtype="stepfilled",
            bins=25, alpha=0.8, density=True)


fig, ax = plt.subplots()
plot_beta_hist(ax, 10, 10)
plot_beta_hist(ax, 4, 12)
plot_beta_hist(ax, 50, 12)
plot_beta_hist(ax, 6, 55)
ax.set_title("'bmh' style sheet")

plt.show()

Shift + Enter 执行 Cell,即可看到绘制出的图像。

2.whats_new_99_mplot3d

示例代码:/whats_new_99_mplot3d.py
import random

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.mplot3d import Axes3D

X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = np.sin(R)

fig = plt.figure()
ax = Axes3D(fig)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.viridis)

plt.show()

同样执行 Cell,即可看到绘制出的图像。

动手试试

最后,我们来尝试绘制一个二次函数图像,你可以自行实现,也可以参考下面代码:

示例代码:/my.py
import matplotlib.pyplot as plt
import numpy as np

x = np.arange(-10, 11)
y = x**2

plt.plot(x, y)
plt.show()

搭配 TensorFlow(可选)

任务时间:30min

TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。

TensorFlow 最初由 Google 大脑小组的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。

安装 TensorFlow

我们使用 pip 安装相关依赖及 Tensorflow

pip install protobuf
pip install tensorflow

测试 TensorFlow

  • 关于 TensorFlow 的使用请移步其官网,这里只是测试其在 Jupiter 中是否可用。

点击打开 tensorflow.ipynb 编辑界面。

Cell 中加入以下代码(整理自官网 MNIST 教程):

示例代码:/tensorflow.py
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

# The MNIST Data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# Regression
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

# Training
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)

sess = tf.InteractiveSession()

tf.global_variables_initializer().run()

for _ in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# Evaluating
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

按下 Shift + Enter,学习过程结束后可以看到输出了准确率(92% 左右)。

自由体验

任务时间:20min

接下来你可以自由体验搭建起的云端 Jupyter Notebook。

完成实验

恭喜!您已经成功搭建起了一个云端的 Jupyter Notebook 环境。你可以选择保留已经运行的服务,继续进行 Jupyter Notebook 的使用。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

发表于

我来说两句

3 条评论
登录 后参与评论

相关文章

来自专栏施炯的IoT开发专栏

Ring Tone Manager on Windows Mobile

    手机铃声经常能够体现一个人的个性,有些哥们儿在自习室不把手机设置成震动,一来电就@#$^%^@&^%#$&$*@,声音还很大,唯恐别人听不到。 Win...

1836
来自专栏木制robot技术杂谈

Hexo搭建个人博客(三)—— Hexo博客的美化

通过前两节的学习,我们已经搭建好自己的博客,就像盖房子一样要对内部进行装修,也就是对博客进行美化。 ---- 安装Hexo博客主题 Hexo博客可以安装不同的...

8209
来自专栏221-B

Mac OS X 10.11 安装 Pygame

学完python之后就想玩些进阶的, 比如pygame. 但是在Mac OS X下安装pygame遇到了不少坑, 但最终还是顺利解决了, 也再一次深刻体会到go...

891
来自专栏Crossin的编程教室

Hexo(3)-安装自己喜欢的主题

本系列其它文章: 用 GitHub + Hexo 建立你的第一个博客 [Hexo]部署博客及更新博文 欢迎在今天下面一条推送中留下你的博客地址 本篇来讲解如何安...

4205
来自专栏Java进阶架构师

精选提高开发效率的15个idea插件

最近大部分开发IDE工具都切换到了,所以也花了点心思去找了相关的插件。这里整理的适合各种语言开发的通用插件,也排除掉IntelliJ IDEA自带的常用插件了(...

1102
来自专栏数据之美

SSD Win8 系统盘 4K 无损对齐历险记

1、背景:为什么要 4K 对齐 簇是系统在硬盘上读写文件时的单位,是一个数据块(逻辑概念)。而扇区是硬盘划分的最小单位值,就是簇(数据块)占用的地方(物理概念)...

22510
来自专栏和蔼的张星的图像处理专栏

opencv3.4+contribute编译及官方自带samples编译

圣诞前夕,opencv悄悄发布了3.4版本,和3并没有很大的区别,听说是优化了DNN,这个还没用过,正好换了电脑,新电脑上还没来得及配置opencv,昨天下午闲...

411
来自专栏技术小黑屋

Octopress填坑日记

修改代码简直是太辛苦了。毕竟涉及文件比较多。 于是干脆简单粗暴的把这些文件不存在的文件都创建了吧。直接上代码了

672
来自专栏Alice

如何从appstore下架自己家的app

本文主要讲如何下架appstore上边的app,我看了好多百度的,但是大部分说的都是14年左右的 ,我这边说一下最新的 1.用开发者帐号登陆到iTunes Co...

1718
来自专栏Ryan Miao

安装好centOS5.5 后中文乱码

1.网页浏览的中文乱码 [root@localhost ~]# yum install fonts-chinese 下载完毕后,浏览器可以浏览中文网页。 2.应...

2739

扫码关注云+社区