斯坦福tensorflow教程(二) tensorflow相关运算1.认识下TensorBoard2.常量op3. 数学运算数据类型

1.认识下TensorBoard

TensorFlow不仅是一个软件库,而是一整套包括TensorFlow、TensorBoard、Tensor Serving在内的软件包。为了更大程度地利用TensorFlow,我们应该了解如何将它们串联起来应用。在和一部分,我们来探索下TensorBoard。 TensorBoard是一个图(graph)可视化软件,在(安装TensorFlow的时候会默认安装)。下面是谷歌的介绍: The computations you'll use TensorFlow for - like training a massive deep neural network - can be complex and confusing. To make it easier to understand, debug, and optimize TensorFlow programs, we've included a suite of visualization tools called TensorBoard.

在运行一个包含一些运算的TensorFlow程序时,这些运算会导出成一个时间日志文件。TensorBoard 可以将这些日志文件可视化,以便更好观察程序的机构以及运行表现。TensorBoard和TensorFlow一并使用,会使工作更加有趣和更具生产力。

下面开始我们第一个TensorFlow程序,并使用TensorBoard可视化。

import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:
    print(sess.run(x))

执行结果

为了将上面程序可视化,我们需要下面一行程序将日志写入文件:

writer = tf.summary.FileWriter([logdir], [graph])

[graph] 是运行程序所在的图,可以通过tf.get_default_graph()返回程序默认图,也可以通过sess.graph返回当前会话中运行的图,后者需要你自己先创建一个session。无论哪种方式,都要你在定义graph之后创建一个writer,否则TensorBoard不能可视化程序。

[logdir]是存储日志文件的路径

import tensorflow as tf

a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
writer = tf.summary.FileWriter('./graphs', tf.get_default_graph())
with tf.Session() as sess:
    # writer = tf.summary.FileWriter('./graphs', sess.graph) # if you prefer creating your writer using session's graph
    print(sess.run(x))
writer.close()

然后在cmd运行程序

$ python3 [my_program.py] 
$ tensorboard --logdir="./graphs" --port 6006

在浏览器打开

可视化效果如下

“Const”和“Const_1”指的是a和b,节点“Add”指的是x,为了更好理解运算,我们可以给ops命名。

a = tf.constant(2, name="a")
b = tf.constant(2, name="b")
x = tf.add(a, b, name="add")

我们可以通过点击节点来查看它的值和类型:

2.常量op

op:图中的节点(operation 的缩写). 下面是创建constant的操作 tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)

  • 常数 num = tf.constant(2, name="num")
  • 向量 # constant of 1d tensor (vector) a = tf.constant([2, 2], name="vector")
  • 矩阵 # constant of 2x2 tensor (matrix) b = tf.constant([[0, 1], [2, 3]], name="matrix") 可以通过填充创建tensor,类似于numpy中的操作
  • tf.zeros(shape, dtype=tf.float32, name=None)
# create a tensor of shape and all elements are zeros
tf.zeros([2, 3], tf.int32) ==> [[0, 0, 0], [0, 0, 0]]
  • tf.zeros_like(input_tensor, dtype=None, name=None, optimize=True)
# create a tensor of shape and type (unless type is specified) as the input_tensor but all elements are zeros.
# input_tensor [[0, 1], [2, 3], [4, 5]]
tf.zeros_like(input_tensor) ==> [[0, 0], [0, 0], [0, 0]]
  • tf.ones(shape, dtype=tf.float32, name=None)
# create a tensor of shape and all elements are ones
tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]
  • tf.ones_like(input_tensor, dtype=None, name=None, optimize=True)
# create a tensor of shape and type (unless type is specified) as the input_tensor but all elements are ones.
# input_tensor is [[0, 1], [2, 3], [4, 5]]
tf.ones_like(input_tensor) ==> [[1, 1], [1, 1], [1, 1]]
  • tf.fill(dims, value, name=None)
# create a tensor filled with a scalar value.
tf.fill([2, 3], 8) ==> [[8, 8, 8], [8, 8, 8]]
  • tf.lin_space(start, stop, num, name=None)
tf.lin_space(start, stop, num, name=None)
# create a sequence of num evenly-spaced values are generated beginning at start. If num > 1, the values in the sequence increase by (stop - start) / (num - 1), so that the last one is exactly stop.
# comparable to but slightly different from numpy.linspace

tf.lin_space(10.0, 13.0, 4, name="linspace") ==> [10.0 11.0 12.0 13.0]
  • tf.range([start], limit=None, delta=1, dtype=None, name='range')
# create a sequence of numbers that begins at start and extends by increments of delta up to but not including limit
# slight different from range in Python

# 'start' is 3, 'limit' is 18, 'delta' is 3
tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15]
# 'start' is 3, 'limit' is 1,  'delta' is -0.5
tf.range(start, limit, delta) ==> [3, 2.5, 2, 1.5]
# 'limit' is 5
tf.range(limit) ==> [0, 1, 2, 3, 4]

不像Numpy或者Python其他序列,TensorFlow序列不能迭代

for _ in np.linspace(0, 10, 4): # OK
for _ in tf.linspace(0.0, 10.0, 4): # TypeError: 'Tensor' object is not iterable.

for _ in range(4): # OK
for _ in tf.range(4): # TypeError: 'Tensor' object is not iterable.

也可以生成随机constant,具体请见API

tf.random_normal
tf.truncated_normal
tf.random_uniform
tf.random_shuffle
tf.random_crop
tf.multinomial
tf.random_gamma
tf.set_random_seed

3. 数学运算

  • division相关操作 TensorFlow 运算相当完美与标准,全部内容在这 tf.div(a/b)是TensorFlow的风格,返回a除以b的商数,比如8/3,返回2;

tf.divide(a/b)才和Python的风格一样,a除以b

a = tf.constant([2, 2], name='a')
b = tf.constant([[0, 1], [2, 3]], name='b')
with tf.Session() as sess:
    print(sess.run(tf.div(b, a)))             ⇒ [[0 0] [1 1]]
    print(sess.run(tf.divide(b, a)))          ⇒ [[0. 0.5] [1. 1.5]]
    print(sess.run(tf.truediv(b, a)))         ⇒ [[0. 0.5] [1. 1.5]]
    print(sess.run(tf.floordiv(b, a)))        ⇒ [[0 0] [1 1]]
    print(sess.run(tf.realdiv(b, a)))         ⇒ # Error: only works for real values
    print(sess.run(tf.truncatediv(b, a)))     ⇒ [[0 0] [1 1]]
    print(sess.run(tf.floor_div(b, a)))       ⇒ [[0 0] [1 1]]
  • tf.add_n tf.add_n([a, b, b]) => equivalent to a + b + b
  • 点积 Dot
a = tf.constant([10, 20], name='a')
b = tf.constant([2, 3], name='b')
with tf.Session() as sess:
    print(sess.run(tf.multiply(a, b)))           ⇒ [20 60] # element-wise multiplication
    print(sess.run(tf.tensordot(a, b, 1)))       ⇒ 80 # 按列相乘然后相加

下面是TensorFlow中运算表格,来自《Fundamentals of Deep Learning》

数据类型

待续、

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏简书专栏

基于tensorflow+CNN的搜狐新闻文本分类

tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。 CNN是convolutional neural netwo...

1792
来自专栏用户2442861的专栏

一致性hash算法 - consistent hashing

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 ...

921
来自专栏草根专栏

Python数据分析(二): Pandas技巧 (2)

Pandas的第一部分: http://www.cnblogs.com/cgzl/p/7681974.html github地址: https://github...

2846
来自专栏Python小屋

Python切分图像小案例(1、3、2、4象限子图互换)

首先解释上一篇文章详解Python科学计算扩展库numpy中的矩阵运算(1)最后的习题,该问题答案是10 ** 8 = 100000000,原因在于Python...

3917
来自专栏点滴积累

geotrellis使用(十五)使用Bokeh进行栅格数据可视化统计

Geotrellis系列文章链接地址http://www.cnblogs.com/shoufengwei/p/5619419.html 目录 前言 实现方案 ...

3327
来自专栏后端技术探索

一致性hash算法清晰详解!

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 ...

801
来自专栏后端技术探索

一致性hash算法清晰详解!

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 ...

802
来自专栏三十课

基于规则评分的密码强度检测算法分析及实现(JavaScript)

用正则表达式做用户密码强度的通过性判定,过于简单粗暴,不但用户体验差,而且用户帐号安全性也差。那么如何准确评价用户密码的强度,保护用户帐号安全呢?本文分析介绍了...

5356
来自专栏后端技术探索

一致性hash算法清晰详解!

consistent hashing 算法早在 1997 年就在论文 Consistent hashing and random trees 中被提出,目前在 ...

991
来自专栏王小雷

R语言基础命令与安装

1. R的安装过程 1.1.首先附上清华线路的下载链接Windows版3.3.1 1.2. 选择安装路径 ? 1.3. 注意根据自己的计算机位数选择,如我的是6...

2185

扫码关注云+社区