《算法图解》note 10 K近邻算法1.K近邻算法简介2.python实现方式3.K近邻算法的优缺点

这是《算法图解》第十篇读书笔记,内容主要是K邻近算法的介绍。

1.K近邻算法简介

K近邻算法(K-nearest neighbor)是一个给定训练数据,根据样本数据最近的K个实例的类别来判断样本数据的类别或数值的算法。该算法可细分为两种类型:判断样本类别的分类算法,计算样本数据的值的算法。

2.python实现方式

可用python的scikit-learn包实现K近邻算法。 调用包的方式如下:

from sklearn import neighbors
#K近邻算法的分类算法
classifier=neighbors.KNeighborsClassifier()
#K近邻算法的回归算法
regressor=neighbors.KNeighborsRegressor()

3.K近邻算法的优缺点

3.1优点

(1)可处理分类问题和回归问题。 (2)适合大样本情况下的自动分析。

3.2缺点

(1)计算量大。 (2)样本不平衡时,对稀少类的分率准确率较低。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏计算机视觉

基于图的分割 Efficient Graph-Based Image Segmentation 论文详解

输入图片 不同参数下的分割结果 原图片 产生superpixel的方法 1. How to segment an image into regions?    ...

3918
来自专栏Pytorch实践

Pytorch实现Logistic回归二分类

? 摘要:本文主要介绍使用深度学习框架Pytorch实现简单的Logistic回归模型,进而实现简单的分类问题。 一.逻辑回归简述 逻辑回归实质上是线性回...

91314
来自专栏深度学习那些事儿

利用pytorch实现神经网络风格迁移Neural Transfer

载入图像输入大小无要求,最终会被剪裁到相同大小,这是因为神经网络设计了一个特定的输入大小,因此内容图像和风格图像必须大小一致。

2102
来自专栏机器学习算法全栈工程师

干货|(DL~2)一看就懂的卷积神经网络

文章来自:https://leonardoaraujosantos.gitbooks.io 作者:Leonardo Araujo dos Santos

781
来自专栏烂笔头

机器学习笔记—KNN算法

目录[-] 前言 分类(Classification)是数据挖掘领域中的一种重要技术,它从一组已分类的训练样本中发现分类模型,将这个分类模型应用到待分类的样...

48510
来自专栏贾志刚-OpenCV学堂

VGG卷积神经网络模型解析

一:VGG介绍与模型结构 VGG全称是Visual Geometry Group属于牛津大学科学工程系,其发布了一些列以VGG开头的卷积网络模型,可以应用在人脸...

3964
来自专栏贾志刚-OpenCV学堂

使用OpenCV与sklearn实现基于词袋模型(Bag of Word)的图像分类预测与搜索

基于OpenCV实现SIFT特征提取与BOW(Bag of Word)生成向量数据,然后使用sklearn的线性SVM分类器训练模型,实现图像分类预测。实现基于...

1953
来自专栏机器学习、深度学习

人脸检测--Faceness-Net: Face Detection through Deep Facial Part Responses

Faceness-Net: Face Detection through Deep Facial Part Responses PAMI2017 From...

3046
来自专栏机器学习算法全栈工程师

趣谈深度学习核心----激活函数

作者:詹晓辉 编辑:王抒伟 当你在苦扒图像处理方法得时候 他在用深度学习 当你在干瞪切片像素得时候 他在用深度学习 当你在愁思小偷是谁得时候 他在用深度学习 当...

3457
来自专栏ml

深度学习之图像的数据增强

   在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强, 数据增强,常用的方式,就是旋转图...

7297

扫码关注云+社区