神经网络中的激活函数-tanh为什么要引入激活函数tanh的绘制公式特点图像python绘制tanh函数相关资料

为什么要引入激活函数

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了。

正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。激活函数的作用是为了增加神经网络模型的非线性。否则你想想,没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。所以你没有非线性结构的话,根本就算不上什么神经网络。

tanh的绘制

tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来。

公式

其实tanh(x)=2*sigmoid(2*x)-1

特点

  • 函数:y=tanh x;
  • 定义域:R
  • 值域:(-1,1)。
  • y=tanh x是一个奇函数,其函数图像为过原点并且穿越Ⅰ、Ⅲ象限的严格单调递增曲线,其图像被限制在两水平渐近线y=1和y=-1之间。

图像

python绘制tanh函数

import math
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mpl


def tanh(x):
    return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))

fig = plt.figure(figsize=(6, 4))
ax = fig.add_subplot(111)

x = np.linspace(-10, 10)
y = tanh(x)


ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')

ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.set_xticks([-10, -5, 0, 5, 10])
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
ax.set_yticks([-1, -0.5, 0.5, 1])

plt.plot(x, y, label="Sigmoid", color="red")
plt.legend()
plt.show()

结果:

相关资料

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PPV课数据科学社区

机器学习算法基础概念学习总结

1.基础概念 (1) 10折交叉验证:英文名是10-fold cross-validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份。轮...

3424
来自专栏机器学习算法全栈工程师

《机器学习》笔记-线性模型(3)

作者:刘才权 编辑:李文臣 写在前面 ...

3604
来自专栏真皮专栏

EM Algorithm

EM算法和之前学的都不太一样,EM算法更多的是一种思想,所以后面用几个例子讲解,同时也会重点讲解GMM高斯混合模型。

1394
来自专栏小小挖掘机

推荐系统遇上深度学习(六)--PNN模型理论和实践

推荐系统遇上深度学习(五)--Deep&Cross Network模型理论和实践

992
来自专栏大数据挖掘DT机器学习

机器学习模型的特性

机器学习模型中有许多种不同方法可以用来解决分类和回归问题。对同一个问题来说,这些不同模型都可以被当成解决问题的黑箱来看待。然而,每种模型都源自于不同的...

33411
来自专栏大数据挖掘DT机器学习

算法工程师的面试难不难,如何准备?-图像处理/CV/ML/DL到HR面总结

把一些相关的知识点总结一下。这个比长,感兴趣的挑自己相关的那部分看。 都是一些基础知识,面相关岗位问到的比较多。 (回答时对算法要有一定的见解,最好不要照书上的...

5335
来自专栏小樱的经验随笔

神经网络算法

我们在设计机器学习系统时,特别希望能够建立类似人脑的一种机制。神经网络就是其中一种。但是考虑到实际情况,一般的神经网络(BP网络)不需要设计的那么复杂,不需要包...

3224
来自专栏机器之心

教程 | 如何通过牛顿法解决Logistic回归问题

选自TLP 机器之心编译 参与:Nurhachu Null、黄小天 本文介绍了牛顿法(Newton's Method),以及如何用它来解决 logistic 回...

3295
来自专栏数据科学与人工智能

【陆勤笔记】《深入浅出统计学》5离散概率分布的运用:善用期望

意外从天而降,未来如何演变? 利用概率预测长期结果,利用期望度量结果的确定性。 随机变量 随机变量是一个可以等于一系列数值的变量,而这一系列数值中的每一个值都与...

21910
来自专栏SIGAI学习与实践平台

基于内容的图像检索技术综述 传统经典方法

原创声明:本文为 SIGAI 原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。

1817

扫码关注云+社区