前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从锅炉工到AI专家(10)

从锅炉工到AI专家(10)

作者头像
俺踏月色而来
发布2018-06-20 10:50:09
6610
发布2018-06-20 10:50:09
举报
RNN循环神经网络(Recurrent Neural Network)

如同word2vec中提到的,很多数据的原型,前后之间是存在关联性的。关联性的打破必然造成关键指征的丢失,从而在后续的训练和预测流程中降低准确率。 除了提过的自然语言处理(NLP)领域,自动驾驶前一时间点的雷达扫描数据跟后一时间点的扫描数据、音乐旋律的时间性、股票前一天跟后一天的数据,都属于这类的典型案例。 因此在传统的神经网络中,每一个节点,如果把上一次的运算结果记录下来,在下一次数据处理的时候,跟上一次的运算结果结合在一起混合运算,就可以体现出上一次的数据对本次的影响。

如上图所示,图中每一个节点就相当于神经网络中的一个节点,t-1 、 t 、 t+1是指该节点在时间序列中的动作,你可以理解为第n批次的数据。 所以上面图中的3个节点,在实现中实际是同1个节点。 指的是,在n-1批次数据到来的时候,节点进行计算,完成输出,同时保留了一个state。 在下一批次数据到来的时候,state值跟新到来的数据一起进行运算,再次完成输出,再次保留一个state参与下一批次的运算,如此循环。这也是循环神经网络名称的由来。

RNN算法存在一个问题,那就是同一节点在某一时间点所保存的状态,随着时间的增长,它所能造成的影响就越小,逐渐衰减至无。这对于一些长距离上下文相关的应用,仍然是不满足要求的。 这就又发展出了LSTM算法。

LSTM长短期记忆网络(Long Short-Term Memory)

如图所示:LSTM区别于RNN的地方,主要就在于它在算法中加入了一个判断信息有用与否的“处理器”,这个处理器作用的结构被称为cell。 一个cell当中被放置了三个“门电路”,分别叫做输入门、遗忘门和输出门。一个信息进入LSTM的网络当中,可以根据规则来判断是否有用。只有符合算法认证的信息才会留下,不符的信息则通过遗忘门被遗忘。

  • 遗忘门决定让哪些信息继续通过这个cell。
  • 输入门决定让多少新的信息加入到 cell状态中来。
  • 输出门决定我们要输出什么样的值。

通过这样简单的节点结构改善,就有效的解决了长时序依赖数据在神经网络中的表现。

LSTM随后还出现了不少变种,进一步加强了功能或者提高了效率。比如当前比较有名的GRU(Gated Recurrent Unit )是2014年提出的。GRU在不降低处理效果的同时,减少了一个门结构。只有重置门(reset gate)和更新门(update gate)两个门,并且把细胞状态和隐藏状态进行了合并。这使得算法的实现更容易,结构更清晰,运算效率也有所提高。 目前的应用中,较多的使用是LSTM或者GRU。RNN网络其实已经很少直接用到了。

实现一个RNN网络

官方的RNN网络教程是实现了一个NLP的应用,技术上很切合RNN的典型特征。不过从程序逻辑上太复杂了,而且计算结果也很不直观。 为了能尽快的抓住RNN网络的本质,本例仍然延续以前用过的MNIST程序,把其中的识别模型替换为RNN-LSTM网络,相信可以更快的让大家上手RNN-LSTM。 本例中的源码来自aymericdamien的github仓库,为了更接近我们原来的示例代码,适当做了修改。在此对原作者表示感谢。 官方的课程建议在读完这里的内容之后再去学习,并且也很值得深入的研究。 源码:

#!/usr/bin/env python
# -*- coding=UTF-8 -*-

""" Recurrent Neural Network.

A Recurrent Neural Network (LSTM) implementation example using TensorFlow library.
This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)

Links:
    [Long Short Term Memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
    [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
"""

from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import rnn

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
#这里指向以前下载的数据,节省下载时间
#使用时请将后面的路径修改为自己数据所在路径
mnist = input_data.read_data_sets("../mnist/data", one_hot=True)

'''
To classify images using a recurrent neural network, we consider every image
row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then
handle 28 sequences of 28 steps for every sample.
'''

# Training Parameters
#训练梯度
learning_rate = 0.001
#训练总步骤
training_steps = 10000
#每批次量
batch_size = 128
#每200步显示一次训练进度
display_step = 200

# Network Parameters
#下面两个值实际就是28x28的图片,但是分成每组进入RNN的数据28个,
#然后一共28个批次(时序)的数据,利用这种方式,找出单方向相邻两个点之间的规律
#这种方式当时不如CNN的效果,但我们这里是为了展示RNN的应用
num_input = 28 # MNIST data input (img shape: 28*28)
timesteps = 28 # timesteps
#LSTM网络的参数,隐藏层数量
num_hidden = 128 # hidden layer num of features
#最终分为10类,0-9十个字付
num_classes = 10 # MNIST total classes (0-9 digits)

# tf Graph input
#训练数据输入,跟MNIST相同
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])

# Define weights
#权重和偏移量
weights = tf.Variable(tf.random_normal([num_hidden, num_classes]))
biases = tf.Variable(tf.random_normal([num_classes]))


def RNN(x, weights, biases):

    # Prepare data shape to match `rnn` function requirements
    # Current data input shape: (batch_size, timesteps, n_input)
    # Required shape: 'timesteps' tensors list of shape (batch_size, n_input)

    # Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
    #进入的数据是X[128(批量),784(28x28)]这样的数据
    #下面函数转换成x[128,28]的数组,数组长度是28
    #相当于一个[28,128,28]的张量
    x = tf.unstack(x, timesteps, 1)

    # Define a lstm cell with tensorflow
    #定义一个lstm Cell,其中有128个单元,这个数值可以修改调优
    lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)

    # Get lstm cell output
    #使用单元计算x,最后获得输出及状态
    outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)

    # Linear activation, using rnn inner loop last output
    #仍然是我们熟悉的算法,这里相当于该节点的激活函数(就是原来rule的位置)
    return tf.matmul(outputs[-1], weights) + biases

#使用RNN网络定义一个算法模型
logits = RNN(X, weights, biases)
#预测算法
prediction = tf.nn.softmax(logits)

# Define loss and optimizer
#代价函数、优化器及训练器,跟原来基本是类似的
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)

# Evaluate model (with test logits, for dropout to be disabled)
#使用上面定义的预测算法进行预测,跟样本标签相同即为预测正确
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
#最后换算成正确率
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()

# Start training
with tf.Session() as sess:

    # Run the initializer
    sess.run(init)

    for step in range(1, training_steps+1):
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        # Reshape data to get 28 seq of 28 elements
        #首先把数据从[128,784]转换成[128,28,28]的形状,这跟以前线性回归是不同的
        batch_x = batch_x.reshape((batch_size, timesteps, num_input))
        # Run optimization op (backprop)
        #逐批次训练
        sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
        if step % display_step == 0 or step == 1:
            # Calculate batch loss and accuracy
            #每200个批次显示一下进度,当前的代价值机正确率
            loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
                                                                 Y: batch_y})
            print("Step " + str(step) + ", Minibatch Loss= " + \
                  "{:.4f}".format(loss) + ", Training Accuracy= " + \
                  "{:.3f}".format(acc))

    print("Optimization Finished!")

    # Calculate accuracy for 128 mnist test images
    #训练完成,使用测试组数据进行预测
    test_len = 128
    test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
    test_label = mnist.test.labels[:test_len]
    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))

跟原来的MNIST代码对比,本源码有以下几个修改:

  • 常量在前面集中定义,这是编程习惯上的调整,跟TensorFlow及RNN-LSTM无关
  • 核心算法替换成了RNN,在RNN函数中实现,其中主要做了3个动作:
    • 首先把数据切成28个数据一个批次。原来从训练集中读取的数据是[128批次,784数据]的张量。 随后在主循环中改成了:[128,28,28]的张量喂入RNN。注释中有说明,这是利用RNN的特征,试图寻找每张图片在单一方向上相邻两个点之间是否存在规律。 RNN中第一个动作就是按照时序分成28个批次。变成了[28,128,28]的样式。
    • 随后定义了一个基本的LSTM Cell,包含128个单元,这里可以理解为神经网络中的隐藏层。
    • 最后使用我们熟悉的线性回归作用到每一个输出单元中去,在这里,这个线性回归也相当于神经网络中每个节点的激活函数。
  • 交叉熵的计算又换了一种算法:softmax_cross_entropy_with_logits,同我们前面用过的sparse_softmax_cross_entropy功能是接近的,基本可以互相代换。
  • 随后的训练和预测,基本同原来的算法是相同。

运算结果:

Step 9000, Minibatch Loss= 0.4518, Training Accuracy= 0.859
Step 9200, Minibatch Loss= 0.4717, Training Accuracy= 0.852
Step 9400, Minibatch Loss= 0.5074, Training Accuracy= 0.859
Step 9600, Minibatch Loss= 0.4006, Training Accuracy= 0.883
Step 9800, Minibatch Loss= 0.3571, Training Accuracy= 0.875
Step 10000, Minibatch Loss= 0.3069, Training Accuracy= 0.906
Optimization Finished!
Testing Accuracy: 0.8828125

训练的结果并不是很高,因为对于图像识别,RNN并不是很好的算法,这里只是演示一个基本的RNN-LSTM模型。

自动写诗

上面的例子让大家对于RNN/LSTM做了入门。实际上RNN/LSTM并不适合用于图像识别,一个典型的LSTM应用案例应当是NLP。我们下面再举一个这方面的案例。 本节是一个利用唐诗数据库,训练一个RNN/LSTM网络,随后利用训练好的网络自动写诗的案例。 源码来自互联网,作者:斗大的熊猫,在此表示感谢。 为了适应python2.x+TensorFlow1.4.1的运行环境,另外也为了大家读起来方便把训练部分跟生成部分集成到了一起,因此源码有所修改。也建议大家去原作者的博客去读一读相关的文章,会很有收获,在引文中也有直接的链接。 源码讲解:

  • 首先是唐诗的数据库,可以在此链接下载到:全唐诗(43030首)
  • readPoetry()函数中,读取了全部的唐诗,分离并抛弃掉标题部分,因为这部分往往不符合诗词的一般格式,参与诗词的训练没有意义。 随后对诗词进行基本的归一化,诸如剔除空格、根据字数分类。原诗中包含说明、介绍、引用等不署于诗词的部分,因为这部分数据完全不规范不能自动处理,所以这样的诗词干脆剔除掉不参与训练。 最后得到的样本集,每首诗保持了中间的逗号和句号,用于体现逗号、句号跟之前的字的规律。此外认为在开头和结尾增加了"["和"]"字符。用于体现每首诗第一个字和最后一个字跟相邻字之间的规律。
  • 接着把诗文向量化,就是上一篇word2vec的工作。但这个源码估计为了降低工作量,没有进行分词,程序假定每个字就是一个词,多字词的关系会被丢失,但这在后面“自动写诗”的环节会比较容易处理,否则可能造成每句诗中因为词语的存在而字数不同。另外一点就是没有把同义词在向量空间中拉近相关的距离,这里也是为了简化操作。也可以说还存在改进的空间。
  • genTrainData()以64首诗为一个批次,生成了训练数据集x_batches/y_batches,因为总体算诗词的数据集比较小。这里没有动态逐批次生成,而是一次生成到两个数组中去。在训练结束生成古诗的时候,这部分实际是没有用的,但训练跟生成集成在同一个程序中,就忽略这点工作了。需要注意的是,生成古诗的时候,批次会设定为1,因为是通过一个汉字预测下一个汉字。
  • neural_network()函数中定义了RNN/LSTM网络,实际上这个主函数考虑了使用RNN / LSTM / GRU三种网络的构建选择,可以任意选择其一。在这里使用了python函数可以跟变量一样赋值并调用的特性,读源码的时候可以注意一下。 与上一个例子还有一点不同,就是这里使用了两层的RNN网络,回忆一下多层神经网络,理解这个概念应当不难。这项工作是由tf.nn.rnn_cell.MultiRNNCell函数完成的。 tf.get_variable()函数也是定义TensorFlow变量,我们之前一直使用tf.Variable(),两者功能类似,前者更适合在作用域的管理下共享变量。 接着要介绍的是个重点:tf.nn.dynamic_rnn,我们前面说过,因为是时序输入的计算模式,所以输入数据可以是不等长的,这是RNN网络的特征之一。我们之前所有的案例,每个训练批次的数据必须是定长,上一个RNN案例中也使用了rnn.static_rnn,这表示使用定长的数据集。 后面的激活函数再次是我们熟悉的softmax,这次等于是把上面数字化之后的唐诗中的汉字做成一个库,分类到其中之一,即为推测出的下一个字。 总结一下模型部分:唐诗数字化的时候,完整的保留了每首诗开头文字、结尾文字、每句的结尾文字之间的关系。所建立的RNN模型,实际上会以上一个文字,预测下一个文字,甚至标点符号都是预测而得到的。
  • 随后的训练部分train_neural_network()没有太多新概念,要注意的是每次调用模型的训练,会保留其last_state,并在下个批次训练的时候,迭代进去。这是我们前面讲RNN模型的时候说过的。而这种模式,是在之前的各种模型中没有出现过的。
  • gen_poetry()自动生成诗句是一个很完整的预测,初始的值会是一个字符"[",表示一个诗的开始,我们样本中,每首诗的开始都是人为增加的“[”字符。RNN模型肯定不会对这么高频的规律搞错。这种模式生成的古诗虽然远远比不上人的作品,但可读性还是比较好的。
  • 藏头诗部分gen_poetry_with_head(),这部分生成的会比较牵强。原因是,人为指定的藏头诗第一个字,不可能刚好吻合唐诗数据库中每句第一个字的规律,因此直接预测出来,很可能没有完成一句话,就已经是句号或者逗号。 程序只能根据预置的句长(这里指定七言),跳过逗号、句号以及结束符号“]”,跳过之后再次重新生成,其实已经不符合一句话中的规律,但为了达到藏头诗的效果,也只能如此。
  • 训练模型使用的批次是64。生成时候所使用的预测模型批次是1,因为使用一个汉字去预测后一个。这个在main()中会自动调整。

其余的部分相信凭借注释和以前的经验应当能看懂了:

#!/usr/bin/env python
# -*- coding=UTF-8 -*-

# source from: 
#  http://blog.topspeedsnail.com/archives/10542
# poetry.txt from:
#  https://pan.baidu.com/s/1o7QlUhO
# revised: andrew
#  https://formoon.github.io
#  add python 2.x support and tf 1.4.1 support
#------------------------------------------------------------------#

import collections
import numpy as np
import tensorflow as tf
import argparse
import codecs
import os,time
import sys
reload(sys)
sys.setdefaultencoding('utf-8')

#-------------------------------数据预处理---------------------------#

poetry_file ='poetry.txt'

# 诗集
poetrys = []
def readPoetry():
    global poetrys
    #with open(poetry_file, "r", encoding='utf-8',) as f:
    with codecs.open(poetry_file, "r","utf-8") as f:
        for line in f:
            try:
                content = line.strip().split(':')[1]
                #title, content = line.strip().split(':')
                content = content.replace(' ','')
                if '_' in content or '(' in content or '(' in content or '《' in content or '[' in content:
                    continue
                if len(content) < 5 or len(content) > 79:
                    continue
                content = '[' + content + ']'
                poetrys.append(content)
            except Exception as e:
                pass
    # 按诗的字数排序
    poetrys = sorted(poetrys,key=lambda line: len(line))

#for item in poetrys:
#    print(item)

# 统计每个字出现次数
readPoetry()
all_words = []
for poetry in poetrys:
    all_words += [word for word in poetry]
#    print poetry
#    for word in poetry:
#        print(word)
#        all_words += word
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)
#print words

# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_num_map = dict(zip(words, range(len(words))))
#print(word_num_map)
# 把诗转换为向量形式,参考word2vec
to_num = lambda word: word_num_map.get(word, len(words))
poetrys_vector = [ list(map(to_num, poetry)) for poetry in poetrys]
#[[314, 3199, 367, 1556, 26, 179, 680, 0, 3199, 41, 506, 40, 151, 4, 98, 1],
#[339, 3, 133, 31, 302, 653, 512, 0, 37, 148, 294, 25, 54, 833, 3, 1, 965, 1315, 377, 1700, 562, 21, 37, 0, 2, 1253, 21, 36, 264, 877, 809, 1]
#....]

# 每次取64首诗进行训练
batch_size = 64
n_chunk = len(poetrys_vector) // batch_size
x_batches = []
y_batches = []
def genTrainData(b):
    global batch_size,n_chunk,x_batches,y_batches,poetrys_vector
    batch_size=b
    for i in range(n_chunk):
        start_index = i * batch_size
        end_index = start_index + batch_size

        batches = poetrys_vector[start_index:end_index]
        length = max(map(len,batches))
        xdata = np.full((batch_size,length), word_num_map[' '], np.int32)
        for row in range(batch_size):
            xdata[row,:len(batches[row])] = batches[row]
        ydata = np.copy(xdata)
        ydata[:,:-1] = xdata[:,1:]
        """
        xdata ydata
        [6,2,4,6,9] [2,4,6,9,9]
        [1,4,2,8,5] [4,2,8,5,5]
        """
        x_batches.append(xdata)
        y_batches.append(ydata)


#---------------------------------------RNN--------------------------------------#

# 定义RNN
def neural_network(input_data, model='lstm', rnn_size=128, num_layers=2):
    if model == 'rnn':
        cell_fun = tf.nn.rnn_cell.BasicRNNCell
    elif model == 'gru':
        cell_fun = tf.nn.rnn_cell.GRUCell
    elif model == 'lstm':
        cell_fun = tf.nn.rnn_cell.BasicLSTMCell

    cell = cell_fun(rnn_size, state_is_tuple=True)
    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    initial_state = cell.zero_state(batch_size, tf.float32)

    with tf.variable_scope('rnnlm'):
        softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)+1])
        softmax_b = tf.get_variable("softmax_b", [len(words)+1])
        with tf.device("/cpu:0"):
            embedding = tf.get_variable("embedding", [len(words)+1, rnn_size])
            inputs = tf.nn.embedding_lookup(embedding, input_data)

    outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope='rnnlm')
    output = tf.reshape(outputs,[-1, rnn_size])

    logits = tf.matmul(output, softmax_w) + softmax_b
    probs = tf.nn.softmax(logits)
    return logits, last_state, probs, cell, initial_state
#训练
def train_neural_network():
    global datafile
    input_data = tf.placeholder(tf.int32, [64, None])
    output_targets = tf.placeholder(tf.int32, [64, None])
    
    logits, last_state, _, _, _ = neural_network(input_data)
    targets = tf.reshape(output_targets, [-1])
    #loss = tf.nn.seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)], len(words))
    loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)], len(words))
    cost = tf.reduce_mean(loss)
    learning_rate = tf.Variable(0.0, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), 5)
    optimizer = tf.train.AdamOptimizer(learning_rate)
    train_op = optimizer.apply_gradients(zip(grads, tvars))

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        #saver = tf.train.Saver(tf.all_variables())
        saver = tf.train.Saver()

        for epoch in range(50):
            sess.run(tf.assign(learning_rate, 0.002 * (0.97 ** epoch)))
            n = 0
            for batche in range(n_chunk):
                train_loss, _ , _ = sess.run([cost, last_state, train_op], feed_dict={input_data: x_batches[n], output_targets: y_batches[n]})
                n += 1
                print(epoch, batche, train_loss)
            if epoch % 7 == 0:
                #保存的数据,文件名中有批次的标志
                saver.save(sess, datafile, global_step=epoch)

#-------------------------------生成古诗---------------------------------#
# 使用训练完成的模型
 
def gen_poetry():
    global datafile
    input_data = tf.placeholder(tf.int32, [1, None])
    output_targets = tf.placeholder(tf.int32, [1, None])

    def to_word(weights):
        t = np.cumsum(weights)
        s = np.sum(weights)
        sample = int(np.searchsorted(t, np.random.rand(1)*s))
        return words[sample]

    _, last_state, probs, cell, initial_state = neural_network(input_data)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        saver = tf.train.Saver()
        #读取最后一个批次的训练数据
        saver.restore(sess, datafile+"-49")

        state_ = sess.run(cell.zero_state(1, tf.float32))

        x = np.array([list(map(word_num_map.get, '['))])
        [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
        word = to_word(probs_)
        #word = words[np.argmax(probs_)]
        poem = ''
        while word != ']':
            poem += word
            if word == ',' or word=='。':
                poem += '\n'
            x = np.zeros((1,1))
            x[0,0] = word_num_map[word]
            [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
            word = to_word(probs_)
            #word = words[np.argmax(probs_)]
        return poem
 

#-------------------------------生成藏头诗---------------------------------#
def gen_poetry_with_head(head,phase):
    global datafile
    input_data = tf.placeholder(tf.int32, [1, None])
    output_targets = tf.placeholder(tf.int32, [1, None])

    def to_word(weights):
        t = np.cumsum(weights)
        s = np.sum(weights)
        sample = int(np.searchsorted(t, np.random.rand(1)*s))
        return words[sample]

    _, last_state, probs, cell, initial_state = neural_network(input_data)

    with tf.Session() as sess:
#        sess.run(tf.initialize_all_variables())
        sess.run(tf.global_variables_initializer())

        saver = tf.train.Saver()
        saver.restore(sess, datafile+"-49")

        state_ = sess.run(cell.zero_state(1, tf.float32))
        poem = ''
        i = 0
        p = 0
        head=unicode(head,"utf-8");
        for word in head:
            while True:
                if word != ',' and word != '。' and word != ']':
                    poem += word
                    p += 1
                    if p == phase:
                        p = 0
                        break
                else:
                    word='['
                x = np.array([list(map(word_num_map.get, word))])
                [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
                word = to_word(probs_)
            if i % 2 == 0:
                poem += ',\n'
            else:
                poem += '。\n'
            i += 1
        return poem

FLAGS = None 
datafile='./data/module-49'
def datafile_exist():
    return os.path.exists(datafile+"-49.index")

def main(_):
#    if FLAGS.train or (not datafile_exist()):
    if FLAGS.train:
        genTrainData(64)
        print("poems: ",len(poetrys))
        train_neural_network()
        exit()
    if datafile_exist():
        genTrainData(1)
        if FLAGS.generate:
            print(gen_poetry())
        else:
            print(gen_poetry_with_head(FLAGS.head,7))

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-a','--head', type=str, default='大寒将至',
                      help='poetry with appointed head char')
    parser.add_argument('-t','--train', action='store_true',default=False,
                      help='Force do train')
    parser.add_argument('-g','--generate', action='store_true',default=False,
                      help='Force do train')
    FLAGS, unparsed = parser.parse_known_args()
    tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

使用方法: -a参数是指定藏头诗开始的字; -g参数直接自动生成; -t强制开始训练。(注意训练的时间还是比较长的)

生成的效果请看:

> ./poetry.py -g
沉眉默去迎风雪,
江上才风著故人。
手把柯子不看泪,
笑逢太守也怜君。
秋风不定红钿啭,
茶雪欹眠愁断人。
语苦微成求不死,
醉看花发渐盈衣。

#藏头诗
> ./poetry.py -a "春节快乐"
春奔桃芳水路犹,
节似鸟飞酒绿出。
快龟缕日发春时,
乐见来还日只相。

至少有了个古诗的样子了。

(待续...)

引文及参考

TensorFlow练习3: RNN, Recurrent Neural Networks TensorFlow练习7: 基于RNN生成古诗词 如何用TensorFlow构建RNN?这里有一份极简的教程 (译)理解 LSTM 网络 (Understanding LSTM Networks by colah)

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-03-09 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • RNN循环神经网络(Recurrent Neural Network)
  • LSTM长短期记忆网络(Long Short-Term Memory)
  • 实现一个RNN网络
  • 自动写诗
  • 引文及参考
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档