Gradient Descent

整理自Andrew Ng的machine learning课程。

目录:

  • 梯度下降算法
  • 梯度下降算法的直观展示
  • 线性回归中的梯度下降

前提:

线性回归模型 :$h(\theta_0,\theta_1)=\theta_0+\theta_1x$

损失函数:$J(\theta_0,\theta_1)=\frac{1}{2m} \sum_{i=1}^m (h_\theta(x^(i))-y^(i))^2$  

1、梯度下降算法

目的:求解出模型的参数 / estimate the parameters in the hypothesis function

如下图所示,$\theta_0,\theta_1$代表模型的参数,$J(\theta_0,\theta_1)$代表模型的损失函数

目的:从某一点出发,走到最低点。

怎么走:沿着所在点处最陡的方向下降。某一点山坡最陡的方向就是这一点的切线方向,也就是这一点的导数。每一步走多大取决于学习率$\alpha$。

在图中,每一个十字星之间的距离取决与$\alpha$的大小。小的$\alpha$会使两点之间的距离比较小,大的$\alpha$会产生大的步距。每一步走的方向取决于所在点的偏导。不同的起始点会有不同的终点,如上图从A出发最终到达B,而从C出发最终到达D。

梯度下降算法如下:

$\theta_j:=\theta_j-\alpha\frac{\partial}{\partial \theta_j}J(\theta_0,\theta_1)$    repeat util convergence

注意:$\theta_0,\theta_1$在每一步的迭代中都是同步更新的

2、梯度下降算法的直观展示

如下图:此图是一个损失函数的图像

当$\theta_1$在最小值点的右边时,图像的斜率(导数)是正的,学习率$\alpha$也是正的,根据梯度下降算法的公式,更新后的$\theta_1$是往左边方向走了,的确是朝着最小值点去了;

当$\theta_1$在最小值点的左边时,图像的斜率(导数)是负的,学习率$\alpha$是正的,根据梯度下降算法的公式,更新后的$\theta_1$是往右边方向走了,也是朝着最小值点去了;

 另外,我们需要调整$\alpha$使的算法可以在一定的时间内收敛。收敛失败或者收敛的非常慢,都说明使用的步长$\alpha$是错误的。

如果使用固定的$\alpha$,算法会收敛吗?

梯度下降算法隐含的一个信息就是,当点越来越接近最小值点的时候,梯度也会越来越小,到达最小值点时,梯度为0;

所以即使不去调整$\alpha$,走的步长也是会越来越短的,算法最终也还是会收敛的,所以没必要每次都调整$\alpha$的大小。

 3、线性回归中的梯度下降算法

当把梯度下降算法具体的运用到线性回归上去的时候,算法就可以在偏导部分写的更加具体了:

repear until convergence {

$\qquad \theta_0:=\theta_0-\alpha \frac {1}{m} \sum_{i=1}^m (h_\theta(x_i)-y_i)$

$\qquad \theta_1:=\theta_1-\alpha \frac {1}{m} \sum_{i=1}^m ((h_\theta(x_i)-y_i)x_i)$

                                       }

batch gradient descent

以上:在每一步更新参数时,让所有的训练样本都参与更新的做法,称为batch gradient descent;

注意到:虽然梯度下降算法可能会陷入局部最优的情况,但是在线性回归中不存在这种问题,线性回归只有一个全局最优,没有局部最优,算法最终一定可以找到全局最优点(假设$\alpha$不是特别大)。

线性回归中,J是一个凸二次函数,这样的函数是碗状的(bowl-shaped),没有局部最优,只有一个全局最优。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏WD学习记录

机器学习 学习笔记(19)神经网络

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

942
来自专栏杨熹的专栏

神经网络 之 感知器的概念和实现

本文结构: 什么是感知器 有什么用 代码实现 ---- 1. 什么是感知器 如下图,这个神经网络中,每个圆圈都是一个神经元,神经元也叫做感知器 ? 只有一个隐藏...

3624
来自专栏AI科技大本营的专栏

资源 |​ 史上最全机器学习笔记

本文由LCatro整理 机器学习 机器学习算法原理 https://github.com/wepe/MachineLearning 机器学习实战原书内容与批注 ...

41110
来自专栏帮你学MatLab

MATLAB智能算法30个案例分析(3-2)

神经网路部分 function err=Bpfun(x,P,T,hiddennum,P_test,T_test) %% 训练&测试BP网络 %% 输入 % x...

2935
来自专栏MelonTeam专栏

深度学习简易入门

深度学习是机器学习中的一个重要的方向,深度学习其实就是神经网络学习,这里“深度”就是说神经网络中众多的层。

2047
来自专栏我的python

自然语言处理之文本卷积

自然语言处理之文本卷积 1.文本的向量表示 2.文本的1维卷积 3.池化

32916
来自专栏深度学习与计算机视觉

理解激活函数在神经网络模型构建中的作用

什么是激活函数 在生物学家研究大脑神经元工作机理时,发现如果一个神经元开始工作时,该神经元是一种被激活的状态,我想着大概就是为什么神经网络模型中有一个单元叫做激...

2245
来自专栏杨熹的专栏

什么是神经网络

本文结构: 什么是神经网络 什么是神经元 神经网络的计算和训练 代码实现 ---- 1. 什么是神经网络 神经网络就是按照一定规则将多个神经元连接起来的网络 例...

3285
来自专栏绿巨人专栏

神经网络学习笔记-03-循环神经网络-反向传播计算公式的证明

2626
来自专栏PaddlePaddle

卷积层

深度学习基础理论-CNN篇 卷积层 卷积层(convolution layer)是卷积神经网络中的基础操作,甚至在网络最后起分类作用的全连接层在工程实现时也...

3599

扫码关注云+社区