支持向量机2

整理自李航老师统计机器学习。

拍照版纸质笔记。

目录:

  • 线性支持向量机与软间隔最大化
  • 学习的对偶算法
  • 支持向量
  • 合页损失函数
  • 核函数与核技巧
  • 非线性支持向量机
  • 序列最小最优化(SMO)算法

序列最小最优化(SMO)算法

支持向量机的学习问题即凸二次规划的求解问题,有很多的算法可以进行求解。但是当训练样本的数目非常多的时候,算法会十分的低效,以至于无法使用。

SMO算法可以快速高效的求解出学习问题。它的一个基本思路是:当所有的解的变量都满足KKT条件时,那么这就是最优化问题的解;否则,选取两个变量,固定其他的变量,构造一个只含两个变量的凸二次规划问题,求解这个问题得到的解就会更加接近原始问题的解,而且2个变量的凸二次规划问题具有解析解,求解简单;这样做可以大大加快算法的计算速度。

具体的SMO算法不做解释。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏SIGAI学习与实践平台

人脸检测算法综述

人脸检测是目前所有目标检测子方向中被研究的最充分的问题之一,它在安防监控,人证比对,人机交互,社交和娱乐等方面有很强的应用价值,也是整个人脸识别算法的第一步。在...

5361
来自专栏磐创AI技术团队的专栏

干货 | 基于深度学习的目标检测算法综述(三)

目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。近些年随着深度学习技术的火热发展,目标检测算法也从基...

4321
来自专栏专知

【深度前沿】深度森林最新进展,南京大学周志华教授MLA2017解读,最新实验结果挑战深度学习

【导读】北京时间 11月5 日到11月6日,一年一度的“机器学习及其应用”(MLA)系列研讨会在北京交通大学开幕,西瓜书《机器学习》作者、南京大学机器学习与数据...

1K5
来自专栏PPV课数据科学社区

数据科学家最常用的十大机器学习算法

在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。

1412
来自专栏云时之间

通过BP神经网络对于图像压缩的实现

BP神经网络现在来说是一种比较成熟的网络模型了,因为神经网络对于数字图像处理的先天优势,特别是在图像压缩方面更具有先天的优势,因此,我这一段时间在研究神经网络的...

37110
来自专栏算法channel

机器学习|支持向量机之软间隔和核函数

这是SVM的第一部分,如想了解,请参考: 机器学习|支持向量机参数求解 01 — 噪音点出现了 如下图所示,有一个带圈的噪音点出现在了右下角,决策边界在哪里?...

2936
来自专栏机器学习、深度学习

人脸对齐--Pose-Invariant Face Alignment with a Single CNN

Pose-Invariant Face Alignment with a Single CNN ICCV2017 http://cvlab.cse.ms...

29110
来自专栏AI研习社

直观理解深度学习卷积部分

近几年随着功能强大的深度学习框架的出现,在深度学习模型中搭建卷积神经网络变得十分容易,甚至只需要一行代码就可以完成。

1162
来自专栏机器学习算法与Python学习

收藏 | 数据分析师最常用的10个机器学习算法!

在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。

1134
来自专栏机器学习原理

深度学习(5)——RBF算法简介

1683

扫码关注云+社区