machine learning 之 Neural Network 1

整理自Andrew Ng的machine learning课程week 4. 

目录:

  • 为什么要用神经网络
  • 神经网络的模型表示 1
  • 神经网络的模型表示 2
  • 实例1
  • 实例2
  • 多分类问题

1、为什么要用神经网络

当我们有大量的features时:如$x_1, x_2,x_3.......x_{100}$

假设我们现在使用一个非线性的模型,多项式最高次为2次,那么对于非线性分类问题而言,如果使用逻辑回归的话:

$g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1x_2+\theta_4x_1^2x_2+........)$

大约有5000($\frac{n^2}{2}$)个特征,也就是说O(n2),那么当多项式的次数为3次时,结果更加的大,O(n3)

这样多的特征带来的后果是:1.过拟合的可能性增大     2.计算的耗费很大

举个更加极端的例子,在图像问题中,每一个像素就相当于一个特征,仅对于一个50*50(已经是非常小的图片了)的图像而言,如果是灰度图像,就有2500个特征了,RGB图像则有7500个特征,对于每个特征还有255个取值;

对于这样的一个图像而言,如果用二次特征的话,就有大概3百万个特征了,如果这时候还用逻辑回归的话,计算的耗费就相当的大了

这个时候我们就需要用到neural network了。

2、神经网络的模型表示1

 神经网络的基本结构如下图所示:

$x_0, x_1,x_2,x_3$是输入单元,$x_0$又被称为bias unit,你可以把bias unit都设置为1;

$\theta$是权重(或者直接说参数),连接输入和输出的权重参数;

$h_\theta(x)$是输出的结果;

对于以下的网络结构,我们有以下定义和计算公式:

$a_i^{(j)}$:在第j层的第i个单元的activation(就是这个单元的值),中间层我们称之为hidden layers

$s_j$:第j层的单元数目

$\Theta^{(j)}$:权重矩阵,控制了从第j层到第j+1层的映射关系,$\Theta^{(j)}$的维度为$s_{j+1}*(s_j+1)$

对于$a^{(2)}$的计算公式为:

$a_1^{(2)}=g(\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3})$

$a_2^{(2)}=g(\theta_{20}^{(1)}x_0+\theta_{21}^{(1)}x_1+\theta_{22}^{(1)}x_2+\theta_{23}^{(1)}x_3)$

$a_3^{(2)}=g(\theta_{30}^{(1)}x_0+\theta_{31}^{(1)}x_1+\theta_{32}^{(1)}x_2+\theta_{33}^{(1)}x_3)$

那么同理,

$h_\Theta(x)=a_1^{(3)}=g(\theta_{10}^{(2)}a_0^{(2)}+\theta_{11}^{(2)}a_1^{(2)}+\theta_{12}^{(2)}a_2^{(2)}+\theta_{13}^{(2)}a_3^{(2)})$

 3、神经网络模型表示2

forward propagation: vectorized implementation

对以上的公式的向量化表示:

$z_1^{(2)}=\theta_{10}^{(1)}x_0+\theta_{11}^{(1)}x_1+\theta_{12}^{(1)}x_2+\theta_{13}^{(1)x_3}$

$a_1^{(2)}=g(z_1^{(2)})$

写成向量即为:

$ a^{(1)}=x= \begin{bmatrix} x_0 \\  x_1 \\ x_2 \\ x_3  \end{bmatrix} $          $ z^{(2)}=\begin{bmatrix} z^{(2)}_1 \\ z^{(2)}_1 \\ z^{(2)}_1 \end{bmatrix} $          $\Theta^{(1)}= \begin{bmatrix} \theta^{(1)}_{10} & \theta^{(1)}_{11} & \theta^{(1)}_{12} & \theta^{(1)}_{13} \\ \theta^{(1)}_{20} & \theta^{(1)}_{21} & \theta^{(1)}_{22} & \theta^{(1)}_{23} \\ \theta^{(1)}_{30} & \theta^{(1)}_{31} & \theta^{(1)}_{32} & \theta^{(1)}_{33} \\ \end{bmatrix}$

因此:

$z^{(2)}=\Theta^{(1)}a^{(1)}$

$a^{(2)}=g(z^{(2)})$

加上$a^{(2)}_0=1$:

$z^{(3)}=\Theta^{(2)}a^{(2)}$

$a^{(3)}=h_\Theta(x)=g(z^{(3)})$

以上即为向量化的表达方式。

 对于每个$a^{(j)}$都会学习到不同的特征

4、实例1

先来看一个分类问题,XOR/XNOR,对于$x_1,x_2 \in {0,1}$,当x1和x2不同(0,1或者1,0)时,y为1,相同时y为0;y=x1 xnor n2

对于一个简单的分类问题 AND:

可以用如下的神经网络结构得到正确的分类结果

同样的,对于OR,我们可以设计出以下的网络,也可以得到正确的结果

5、实例2

接着上面的例子,对于 NOT,以下网络结构可以进行分类:

我们回到示例中最初提到的问题:XNOR

当我们组合上述简单例子(AND、OR、NOT)时,就可以得到解决XNOR问题的正确的网络结构:

6、多分类问题

在neural network中的多分类问题的解决,也是用的one vs all的思想,在二分类问题中,我们是输出不是0就是1,而在多分类问题中,输出的结果是一个one hot向量,$h_\Theta(x) \in R^k$,k代表类别数目

比如说对于一个4类问题,输出可能为:

类别1:$\begin{bmatrix}  0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$, 类别2:$\begin{bmatrix}  0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, 类别3:$\begin{bmatrix}  0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ , 等等

你不可以把$h_\Theta(x)$输出为1,2,3,4

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏null的专栏

简单易学的机器学习算法——神经网络之BP神经网络

一、BP神经网络的概念     BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神...

3314
来自专栏机器之心

徒手实现CNN:综述论文详解卷积网络的数学本质

选自arXiv 机器之心编译 参与:黄小天、路雪、蒋思源 近日南洋理工大学研究者发布了一篇描述卷积网络数学原理的论文,该论文从数学的角度阐述整个卷积网络的运算与...

32611
来自专栏null的专栏

深度学习算法原理——栈式自编码神经网络

注:最近打算将UFLDL教程重新看一遍,其实里面有很多关于神经网络以及深度学习的知识点很有用,但是只是学习深度学习的话有一些内容就有点多余,所以想整理一个笔记,...

3225
来自专栏ACM算法日常

第三篇:机器学习之代价函数和梯度下降

从隐层开始每个神经元是上一层逻辑回归的结果并且作为下一层的输入,篇幅限制,我们将在下一篇将详细介绍逻辑回归的公式与代码

612
来自专栏机器学习算法与Python学习

机器学习(15)之支持向量机原理(一)线性支持向量机

关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 支持向量机(Support V...

3486
来自专栏机器学习与自然语言处理

Stanford机器学习笔记-3.Bayesian statistics and Regularization

3. Bayesian statistics and Regularization Content   3. Bayesian statistics and R...

36517
来自专栏IT派

理解SVM的三层境界(二)

第二层、深入SVM 2.1、从线性可分到线性不可分 2.1.1、从原始问题到对偶问题的求解 接着考虑之前得到的目标函数: ? 由于求 的最大值相当于求 ...

2793
来自专栏Echo is learning

Gradient Descent

1293
来自专栏计算机视觉战队

每日一学——最优化笔记(上)

简介 在上一节中,我们介绍了图像分类任务中的两个关键部分: 基于参数的评分函数。该函数将原始图像像素映射为分类评分值(例如:一个线性函数)。 损失函数。该函数能...

3057
来自专栏机器学习算法与Python学习

机器学习(3) -- 贝叶斯及正则化

Content 3. Bayesian statistics and Regularization.     3.1 Underfitting and ov...

2899

扫码关注云+社区