python深度学习库pytorch::transforms练习:opencv,scikit-image,PIL图像处理库比较

进行深度学习时,对图像进行预处理的过程是非常重要的,使用pytorch或者TensorFlow时需要对图像进行预处理以及展示来观看处理效果,因此对python中的图像处理框架进行图像的读取和基本变换的掌握是必要的,接下来python中几个基本的图像处理库进行纵向对比。

项目地址:https://github.com/Oldpan/Pytorch-Learn/tree/master/Image-Processing

比较的图像处理框架:

  • PIL
  • scikit-image
  • opencv-python

PIL:

由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。

摘自廖雪峰的官方网站

scikit-image

scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. 摘自官网的介绍,scikit-image的更新还是比较频繁的,代码质量也很好。

opencv-python

opencv的大名就不要多说了,这个是opencv的python版


# Compare Image-Processing Modules
# Use Transforms Module of torchvision
#               &&&
# 对比python中不同的图像处理模块
# 并且使用torchvision中的transforms模块进行图像处理

# packages
from PIL import Image
from skimage import io, transform
import cv2

import torchvision.transforms as transforms
import matplotlib.pyplot as plt
%matplotlib inline

img_PIL = Image.open('./images/dancing.jpg')
img_skimage = io.imread('./images/dancing.jpg')
img_opencv = cv2.imread('./images/dancing.jpg')
img_plt = plt.imread('./images/dancing.jpg')

loader = transforms.Compose([
    transforms.ToTensor()])  # 转换为torch.tensor格式


print('The shape of \n img_skimage is {}\n img_opencv is {}\n img_plt is {}\n'.format(img_skimage.shape, img_opencv.shape, img_plt.shape))
print('The type of \n img_skimage is {}\n img_opencv is {}\n img_plt is {}\n'.format(type(img_skimage), type(img_opencv), type(img_plt)))
The shape of
img_skimage is (444, 444, 3)
img_opencv is (444, 444, 3)
img_plt is (444, 444, 3)
The size of
img_PIL is (444, 444)
The mode of
img_PIL is RGB
The type of
img_skimage is <class 'numpy.ndarray'>
img_opencv is <class 'numpy.ndarray'>
img_plt is <class 'numpy.ndarray'>
img_PIL if <class 'PIL.JpegImagePlugin.JpegImageFile'>
# 定义一个图像显示函数
def my_imshow(image, title=None):
    plt.imshow(image)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # 这里延时一下,否则图像无法加载


plt.figure()
my_imshow(img_skimage, title='img_skimage')
# 可以看到opencv读取的图像打印出来的颜色明显与其他不同
plt.figure()
my_imshow(img_opencv, title='img_opencv')
plt.figure()
my_imshow(img_plt, title='img_plt')

# opencv读出的图像颜色通道为BGR,需要对此进行转换
img_opencv = cv2.cvtColor(img_opencv, cv2.COLOR_BGR2RGB)
plt.figure()
my_imshow(img_opencv, title='img_opencv_new')
toTensor = transforms.Compose([transforms.ToTensor()])

# 尺寸变化、缩放
transform_scale = transforms.Compose([transforms.Scale(128)])
temp = transform_scale(img_PIL)
plt.figure()
my_imshow(temp, title='after_scale')

# 随机裁剪
transform_randomCrop = transforms.Compose([transforms.RandomCrop(32, padding=4)])
temp = transform_scale(img_PIL)
plt.figure()
my_imshow(temp, title='after_randomcrop')

# 随机进行水平翻转(0.5几率)
transform_ranHorFlip = transforms.Compose([transforms.RandomHorizontalFlip()])
temp = transform_scale(img_PIL)
plt.figure()
my_imshow(temp, title='after_ranhorflip')

# 随机裁剪到特定大小
transform_ranSizeCrop = transforms.Compose([transforms.RandomSizedCrop(128)])
temp = transform_ranSizeCrop(img_PIL)
plt.figure()
my_imshow(temp, title='after_ranSizeCrop')

# 中心裁剪
transform_centerCrop = transforms.Compose([transforms.CenterCrop(128)])
temp = transform_centerCrop(img_PIL)
plt.figure()
my_imshow(temp, title='after_centerCrop')

# 空白填充
transform_pad = transforms.Compose([transforms.Pad(4)])
temp = transform_pad(img_PIL)
plt.figure()
my_imshow(temp, title='after_padding')

# 标准化是在整个数据集中对所有图像进行取平均和均方差,演示图像数量过少无法进行此操作
# print(train_data.mean(axis=(0,1,2))/255)
# print(train_data.std(axis=(0,1,2))/255)
# transform_normal = transforms.Compose([transforms.Normalize()])

# Lamdba使用用户自定义函数来对图像进行剪裁
# transform_pad = transforms.Compose([transforms.Lambda()])

此文由腾讯云爬虫爬取,文章来源于Oldpan博客

欢迎关注Oldpan博客公众号,持续酝酿深度学习质量文:

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

编辑于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏州的先生

【我爱背单词】用Python提炼3000英语新闻高频词汇

1285
来自专栏SeanCheney的专栏

Python解答LeetCode

古有科举八股,今有LeetCode。 八股定格式而取文采心意,LeetCode定题目且重答案背诵。 美其名曰:"practice makes perfec...

47716
来自专栏数据小魔方

R预设配色系统及自定义色板

关于配色的话题,已经聊过很多次了,但是就像是之前说过的,对于图形可视化而言,配色决定着作品的“颜值”,谈再多次都不嫌多。 今天是R语言配色系统综合篇的上篇(当然...

4359
来自专栏诸葛青云的专栏

C语言单纯的模拟麻将胡牌算法!简单分析,不喜莫入

不带赖子,14张牌,以筒子为例子,不考虑杂交系列,纯属探索性算法,并非完整麻将算法,请勿存在误区。单纯的模拟题, 简单的搜索。

760
来自专栏喔家ArchiSelf

10行Python代码的词云

词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。

723
来自专栏PPV课数据科学社区

【学习】R语言基础画图

1.plot函数  plot(x,y,xlim=c(0,100),ylim=c(0.4,1), type="o",lwd=2,col=2,pch=24,...

3265
来自专栏hightopo

基于HTML5和WebGL的3D网络拓扑结构图

1453
来自专栏SpiritLing

CSS3 translate、transform、transition区别

translate:移动,     transform的一个方法               通过 translate() 方法,元素从其当前位置移动,根据给定...

3265
来自专栏腾讯移动品质中心TMQ的专栏

【腾讯TMQ】看图测试指南:图像识别在测试中的应用

也许我们使用过Uiautomator或Monkey来进行系统的测试。但在使用过程中总出现用Uiautomator没法识别、用Monkey无法法复现等问题……本文...

5650
来自专栏王二麻子IT技术交流园地

热点图像的制作

其实这个功能主要是用在地图的制作上啊!    你见过“联想”机器上联想公司赠送的“我的办公室”软件的界面吗?在那幅办公室的图片上用鼠标点一下办公桌上的键盘,就...

18910

扫码关注云+社区