【图解数据结构】 二叉树遍历

扯一扯

在看《极客时间》严嘉伟老师的《如何做出好的职业选择——认识你的职业锚》专题直播时,严老师讲到了关于选择的一些问题,我认为其中的一些点讲的非常好,总结一下分享给大家。

人为什么难做选择? 选择意味着放弃 你选择一方,也就意味着放弃了另一方。摆在你面前的选择项越接近,你的选择就会越困难,因为放弃其中任何一个选择项都不容易。如果摆在你面前的选择项对比明显,那么选择起来就会轻松许多,大家几乎都会毫不犹豫的选择“好”的选择项,放弃掉“差”的选择项。 选择永远都不是完美的 选择永远都不可能十全十美,只可能满足尽量多的侧重点。选择的时候想满足越多的侧重点,可能就会越难做出选择。所以在选择上不要过于追求完美。 警惕逃避性选择——不知道自己要去哪儿,还要选择离开。 有一种选择是对现状不满,想逃离这种现状,但是却不知道去哪里。举个例子,可能目前的公司有各种问题,比如开发流程不规范等,如果因为这些问题离开,可能就会从一个坑跳到另外一个更大的坑。当决定离开的时候,一定是自己有明确的目标,很清楚自己想要什么。

二叉树遍历原理

二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次且仅被访问一次。

为什么研究二叉树的遍历?

因为计算机只会处理线性序列,而我们研究遍历,就是把树中的结点变成某种意义的线性序列,这给程序的实现带来了好处。

二叉树的创建

遍历二叉树之前,首先我们要有一个二叉树。要创建一个如下图的二叉树,就要先进行二叉树的扩展,也就是将二叉树每个结点的空指针引出一个虚结点,其值为一个特定值,比如'#'。处理后的二叉树称为原二叉树的扩展二叉树。扩展二叉树的每个遍历序列可以确定一个一颗二叉树,我们采用前序遍历创建二叉树。前序遍历序列:124##5##36##7##。

定义二叉链表结点:

/// <summary>
/// 二叉链表结点类
/// </summary>
/// <typeparam name="T"></typeparam>
public class TreeNode<T>
{
    /// <summary>
    /// 数据域
    /// </summary>
    public T Data { get; set; }
    /// <summary>
    /// 左孩子   
    /// </summary>
    public TreeNode<T> LChild { get; set; } 
    /// <summary>
    /// 右孩子
    /// </summary>
    public TreeNode<T> RChild { get; set; } 

    public TreeNode(T val, TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = val;
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(TreeNode<T> lp, TreeNode<T> rp)
    {
        Data = default(T);
        LChild = lp;
        RChild = rp;
    }

    public TreeNode(T val)
    {
        Data = val;
        LChild = null;
        RChild = null;
    }

    public TreeNode()
    {
        Data = default(T);
        LChild = null;
        RChild = null;
    }
}

先序递归创建二叉树:

/// <summary>
/// 先序创建二叉树
/// </summary>
/// <param name="node"></param>
public static void CreateTree(TreeNode<char> node)
{
    node.Data = Console.ReadKey().KeyChar;

    if (node.Data == '#')
    {
        return;
    }

    node.LChild = new TreeNode<char>();

    CreateTree(node.LChild);

    if (node.LChild.Data == '#')
    {
        node.LChild = null;
    }

    node.RChild = new TreeNode<char>();

    CreateTree(node.RChild);

    if (node.RChild.Data == '#')
    {
        node.RChild = null;
    }
}

二叉树遍历方法

前序遍历

递归方式实现前序遍历

具体过程:

  1. 先访问根节点
  2. 再序遍历左子树
  3. 最后序遍历右子树

代码实现:

public static void PreOrderRecur(TreeNode<char> treeNode)
 {
     if (treeNode == null)
     {
         return;
     }
     Console.Write(treeNode.Data); 
     PreOrderRecur(treeNode.LChild);
     PreOrderRecur(treeNode.RChild);
 }

非递归方式实现前序遍历

具体过程:

  1. 首先申请一个新的栈,记为stack;
  2. 将头结点head压入stack中;
  3. 每次从stack中弹出栈顶节点,记为cur,然后打印cur值,如果cur右孩子不为空,则将右孩子压入栈中;如果cur的左孩子不为空,将其压入stack中;
  4. 重复步骤3,直到stack为空.

代码实现:

public static void PreOrder(TreeNode<char> head)
{
    if (head == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(head);
    while (!(stack.Count == 0))
    {
        TreeNode<char> cur = stack.Pop();
        Console.Write(cur.Data);

        if (cur.RChild != null)
        {
            stack.Push(cur.RChild);
        }
        if (cur.LChild != null)
        {
            stack.Push(cur.LChild);
        }
    }
}

过程模拟:

执行结果:

中序遍历

递归方式实现中序遍历

具体过程:

  1. 先中序遍历左子树
  2. 再访问根节点
  3. 最后中序遍历右子树

代码实现:

public static void InOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }  
    InOrderRecur(treeNode.LChild);
    Console.Write(treeNode.Data); 
    InOrderRecur(treeNode.RChild);
}

非递归方式实现中序遍历

具体过程:

  1. 申请一个新栈,记为stack,申请一个变量cur,初始时令cur为头节点;
  2. 先把cur节点压入栈中,对以cur节点为头的整棵子树来说,依次把整棵树的左子树压入栈中,即不断令cur=cur.left,然后重复步骤2;
  3. 不断重复步骤2,直到发现cur为空,此时从stack中弹出一个节点记为node,打印node的值,并让cur = node.right,然后继续重复步骤2;
  4. 当stack为空并且cur为空时结束。

代码实现:

public static void InOrder(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();

    TreeNode<char> cur = treeNode;

    while (!(stack.Count == 0) || cur != null)
    {
        while (cur != null)
        {
            stack.Push(cur);
            cur = cur.LChild;
        }
        TreeNode<char> node = stack.Pop();
        Console.WriteLine(node.Data);
        cur = node.RChild;
    }
}

过程模拟:

执行结果:

后序遍历

递归方式实现后序遍历

  1. 先后序遍历左子树
  2. 再后序遍历右子树
  3. 最后访问根节点

代码实现:

public static void PosOrderRecur(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }
    PosOrderRecur(treeNode.LChild);
    PosOrderRecur(treeNode.RChild);
    Console.Write(treeNode.Data); 
}

非递归方式实现后序遍历一

具体过程: 使用两个栈实现

  1. 申请两个栈stack1,stack2,然后将头结点压入stack1中;
  2. 从stack1中弹出的节点记为cur,然后先把cur的左孩子压入stack1中,再把cur的右孩子压入stack1中;
  3. 在整个过程中,每一个从stack1中弹出的节点都放在第二个栈stack2中;
  4. 不断重复步骤2和步骤3,直到stack1为空,过程停止;
  5. 从stack2中依次弹出节点并打印,打印的顺序就是后序遍历的顺序;

代码实现:

public static void PosOrderOne(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack1 = new Stack<TreeNode<char>>();
    Stack<TreeNode<char>> stack2 = new Stack<TreeNode<char>>();

    stack1.Push(treeNode);
    TreeNode<char> cur = treeNode;

    while (!(stack1.Count == 0))
    {
        cur = stack1.Pop();
        if (cur.LChild != null)
        {
            stack1.Push(cur.LChild);
        }
        if (cur.RChild != null)
        {
            stack1.Push(cur.RChild);
        }
        stack2.Push(cur);
    }

    while (!(stack2.Count == 0))
    {
        TreeNode<char> node = stack2.Pop();
        Console.WriteLine(node.Data); ;
    }
}

过程模拟:

执行结果:

非递归方式实现后序遍历二

具体过程: 使用一个栈实现

  1. 申请一个栈stack,将头节点压入stack,同时设置两个变量 h 和 c,在整个流程中,h代表最近一次弹出并打印的节点,c代表当前stack的栈顶节点,初始时令h为头节点,,c为null;
  2. 每次令c等于当前stack的栈顶节点,但是不从stack中弹出节点,此时分一下三种情况: (1)如果c的左孩子不为空,并且h不等于c的左孩子,也不等于c的右孩子,则吧c的左孩子压入stack中 (2)如果情况1不成立,并且c的右孩子不为空,并且h不等于c的右孩子,则把c的右孩子压入stack中; (3)如果情况1和2不成立,则从stack中弹出c并打印,然后令h等于c;
  3. 一直重复步骤2,直到stack为空.

代码实现:

public static void PosOrderTwo(TreeNode<char> treeNode)
{
    if (treeNode == null)
    {
        return;
    }

    Stack<TreeNode<char>> stack = new Stack<TreeNode<char>>();
    stack.Push(treeNode);

    TreeNode<char> h = treeNode;
    TreeNode<char> c = null;
    while (!(stack.Count == 0))
    {
        c = stack.Peek();
        //c结点有左孩子 并且 左孩子没被遍历(输出)过 并且 右孩子没被遍历过
        if (c.LChild != null && h != c.LChild && h != c.RChild)
            stack.Push(c.LChild);
        //c结点有右孩子 并且 右孩子没被遍历(输出)过
        else if (c.RChild != null && h != c.RChild)
            stack.Push(c.RChild);
        //c结点没有孩子结点 或者孩子结点已经被遍历(输出)过
        else
        {
            TreeNode<char> node = stack.Pop();
            Console.WriteLine(node.Data);
            h = c;
        }
    }
}

过程模拟:

执行结果:

层序遍历

具体过程:

  1. 首先申请一个新的队列,记为queue;
  2. 将头结点head压入queue中;
  3. 每次从queue中出队,记为node,然后打印node值,如果node左孩子不为空,则将左孩子入队;如果node的右孩子不为空,则将右孩子入队;
  4. 重复步骤3,直到queue为空。

代码实现:

public static void LevelOrder(TreeNode<char> treeNode)
{
    if(treeNode == null)
    {
         return;
    }
    Queue<TreeNode<char>> queue = new Queue<TreeNode<char>>();
    queue.Enqueue(treeNode);

    while (queue.Any())
    {
        TreeNode<char> node = queue.Dequeue();
        Console.Write(node.Data);

        if (node.Left != null)
        {
            queue.Enqueue(node.Left);
        }

        if (node.Right != null)
        {
            queue.Enqueue(node.Right);
        }
    }
}

执行结果:

参考:《大话数据结构》

原文发布于微信公众号 - 撸码那些事(lumanxs)

原文发表时间:2018-05-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能计算时代

Designing your SaaS Database for Scale with Postgres

? If you’re building a SaaS application, you probably already have the notion o...

1914
来自专栏鸿的学习笔记

16位顶级数据科学家语录

Chief Data Scientist at The New York Times & Associate Professor of Applied Ma...

662
来自专栏CreateAMind

Hebbian learning 的实现 Fast Weights

582
来自专栏小樱的经验随笔

Codeforces 791B Bear and Friendship Condition(DFS,有向图)

B. Bear and Friendship Condition time limit per test:1 second memory limit per t...

3339
来自专栏ml

HDUOJ-----4506小明系列故事——师兄帮帮忙

小明系列故事——师兄帮帮忙 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/3276...

2737
来自专栏人工智能LeadAI

排序算法对比、总结(Python代码)

排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。...

3418
来自专栏枕边书

PHP实现堆排序

经验 工作了,面试我工作这家公司时被技术面打击得不行,因为自己的数据结构等基础学得实在太差,虽然原来是想做设计师的说。。。不过看在PHP写得还凑合的份上能来实习...

1707
来自专栏目标检测和深度学习

排序算法算法对比

排序大的分类可以分为两种:内排序和外排序。在排序过程中,全部记录存放在内存,则称为内排序,如果排序过程中需要使用外存,则称为外排序。下面讲的排序都是属于内排序。...

3126
来自专栏desperate633

LeetCode 121. Best Time to Buy and Sell Stock题目Solution

假设有一个数组,它的第i个元素是一支给定的股票在第i天的价格。如果你最多只允许完成一次交易(例如,一次买卖股票),设计一个算法来找出最大利润。 样例 给出一...

593
来自专栏Aloys的开发之路

Peer Code Reviews Made Easy with Eclipse Plug-In

Origin Article: Peer Code Reviews Made Easy with Eclipse Plug-In Origin Author: ...

1636

扫码关注云+社区