*matlab—线性回归方程式与线性系统

*十六、线性回归方程式与线性系统

本章节的内容涉及线性代数的知识,读者应该先去了解,如不了解也可略过本章,无影响

16.1 Gaussian Elimination

在线性代数中我们解方程组的办法一般都是用高斯消去法,即为了找到x1,x2,x3…的解,我们首先把他们对应的系数作为一个矩阵,称为系数矩阵,然后将等式右边的常数作为常数项矩阵放在系数矩阵的右边作为增光矩阵,通过增广矩阵简化为行阶梯形求得x1,x2,x3…

当然,matlab给我们提供了高斯消去法的函数rref,其调用格式为:rref([a b]),其中a是系数矩阵,b是常数项矩阵

示例:

图16-1 rref函数

这样一目了然,我们就知道x1=-3,x2=2,x3=1

16.2 “\”

还是求解方程组,方程组我们可以抽象为Ax=b,其中A是系数矩阵,b是常数项矩阵,那么我们直接下命令x=A\b

图16-2 Left Division

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CreateAMind

生成对抗网络GAN-从最简单代码开始-到INFOGAN

821
来自专栏宏伦工作室

动手实现notMNIST数据集图片分类

1673
来自专栏机器之心

教程 | 使用Keras实现多输出分类:用单个模型同时执行两个独立分类任务

之前我们介绍了使用 Keras 和深度学习的多标签分类(multi-label classification),参阅 https://goo.gl/e8RXtV...

1662
来自专栏机器学习算法原理与实践

支持向量机原理(四)SMO算法原理

  在SVM的前三篇里,我们优化的目标函数最终都是一个关于$\alpha$向量的函数。而怎么极小化这个函数,求出对应的$\alpha$向量,进而求出分离超平面我...

572
来自专栏人工智能头条

Azure Machine Learning 上如何选择合适的机器学习算法

1166
来自专栏fangyangcoder

数字图像处理之亮度变换

                                           by方阳

994
来自专栏CDA数据分析师

资源 | 一个Python特征选择工具,助力实现高效机器学习

项目地址:https://github.com/WillKoehrsen/feature-selector

1000
来自专栏杨熹的专栏

Ensemble Learners

Udacity Ensemble Learners ---- Boosting Algorithm 不需要绞尽脑汁去想很复杂的 Rules,只需要一些简单的 ...

3347
来自专栏磐创AI技术团队的专栏

实用 | 分享一个决策树可视化工具

【磐创AI导读】:这篇文章希望跟大家分享一个可视化决策树或者随机森林的工具。这可以帮助我们更好的去理解或解释我们的模型。想要获取更多的机器学习、深度学习资源。欢...

1011
来自专栏ATYUN订阅号

智能主题检测与无监督机器学习:识别颜色教程

介绍 人工智能学习通常由两种主要方法组成:监督学习和无监督的学习。监督学习包括使用现有的训练集,这种训练集由预先标记的分类数据列组成。机器学习算法会发现数据的...

4564

扫码关注云+社区