移动App 网络优化细节探讨

我们每次在做业务做网络请求的时候,想必每个人都思考过如何进一步优化网络请求吧,比如这三点包括:

  • 速度:网络请求的速度怎样能进一步提升?
  • 弱网:移动端网络环境随时变化,经常出现网络连接很不稳定可用性差的情况,怎样在这种情况下最大限度最快地成功请求?
  • 安全:怎样防止被第三方窃听/篡改或冒充,防止运营商劫持,同时又不影响性能?

对基于浏览器的前端开发来说,网络这块能做的事情很少,但对于客户端 APP 来说,整个网络请求过程是自由控制的,可以做很多事情,很多大型 APP 都针对这三个问题做了很多网络层的优化,一些新的网络层协议像 HTTP2 / QUIC 也是在这些方面进行了不少优化,在这里边学习边整理,大致列举一下常见的做法。

速度

正常一条网络请求需要经过的流程是这样:

1、DNS 解析,请求DNS服务器,获取域名对应的 IP 地址。 2、与服务端建立连接,包括 tcp 三次握手,安全协议同步流程。 3、连接建立完成,发送和接收数据,解码数据。 这里有明显的三个优化点:

1、直接使用 IP 地址,去除 DNS 解析步骤。 2、不要每次请求都重新建立连接,复用连接或一直使用同一条连接(长连接)。 3、压缩数据,减小传输的数据大小。 依次来分析每个优化点我们能做什么

1 DNS DNS 完整的解析流程很长,会先从本地系统缓存取,若没有就到最近的 DNS 服务器取,若没有再到主域名服务器取,每一层都有缓存,但为了域名解析的实时性,每一层缓存都有过期时间,这种 DNS 解析机制有几个缺点:

1、缓存时间设置得长,域名更新不及时,设置得短,大量 DNS 解析请求影响请求速度。 2、域名劫持,容易被中间人攻击,或被运营商劫持,把域名解析到第三方 IP 地址,据统计劫持率会达到7%。 3、DNS 解析过程不受控制,无法保证解析到最快的IP 4、一次请求只能解析一个域名。 为了解决这些问题,就有了 HTTPDNS,这里有iOS版本接入文档HTTPDNS iOS客户端接入文档 ,原理很简单,就是自己做域名解析的工作,通过 HTTP 请求后台去拿到域名对应的 IP 地址,直接解决上述所有问题:

1、域名解析与请求分离,所有请求都直接用IP地址,无需 DNS 解析,APP 定时请求 HTTPDNS 服务器更新IP地址即可。 2、通过签名等方式,保证 HTTPDNS 请求的安全,避免被劫持。 3、DNS 解析由自己控制,可以确保根据用户所在地返回就近的 IP 地址,或根据客户端测速结果使用速度最快的 IP。 4、一次请求可以解析多个域名。 其余细节就不多说了,HTTPDNS 优点这么多,几乎成为中大型 APP 的标配。至此解决了第一个问题 — DNS 解析耗时的问题,顺便把一部分安全问题 — DNS 劫持也解决了。

2 连接 第二个问题,连接建立耗时的问题,这里主要的优化思路是复用连接,不用每次请求都重新建立连接,如何更有效率地复用连接,可以说是网络请求速度优化里最主要的点了,并且这里的优化仍在演进过程中,值得了解下。

keep-alive HTTP 协议里有个 keep-alive,HTTP1.1默认开启,一定程度上缓解了每次请求都要进行TCP三次握手建立连接的耗时。原理是请求完成后不立即释放连接,而是放入连接池中,若这时有另一个请求要发出,请求的域名和端口是一样的,就直接拿出连接池中的连接进行发送和接收数据,少了建立连接的耗时。

实际上现在无论是客户端还是浏览器都默认开启了keep-alive,对同个域名不会再有每发一个请求就进行一次建连的情况,纯短连接已经不存在了。但有个问题,就是这个 keep-alive 的连接一次只能发送接收一个请求,在上一个请求处理完成之前,无法接受新的请求。若同时发起多个请求,就有两种情况:

1、若串行发送请求,可以一直复用一个连接,但速度很慢,每个请求都要等待上个请求完成再进行发送。 2、若并行发送这些请求,那么首次每个请求都要进行tcp三次握手建立新的连接,虽然第二次可以复用连接池里这堆连接,但若连接池里保持的连接过多,对服务端资源产生较大浪费,若限制了保持的连接数,并行请求里超出的连接仍每次要建连。 对这个问题,新一代协议 HTTP2 提出了多路复用去解决。

多路复用

HTTP2 的多路复用机制一样是复用连接,但它复用的这条连接支持同时处理多条请求,所有请求都可以并发在这条连接上进行,也就解决了上面说的并发请求需要建立多条连接带来的问题,网络上有张图可以较形象地表现这个过程:

多路复用 HTTP1.1的协议里,在一个连接里传送数据都是串行顺序传送的,必须等上一个请求全部处理完后,下一个请求才能进行处理,导致这些请求期间这条连接并不是满带宽传输的,即使是HTTP1.1的pipelining可以同时发送多个request,但response仍是按请求的顺序串行返回,只要其中一个请求的response稍微大一点或发生错误,就会阻塞住后面的请求。

HTTP2 这里的多路复用协议解决了这些问题,它把在连接里传输的数据都封装成一个个stream,每个stream都有标识,stream的发送和接收可以是乱序的,不依赖顺序,也就不会有阻塞的问题,接收端可以根据stream的标识去区分属于哪个请求,再进行数据拼接,得到最终数据。

解释下多路复用这个词,多路可以认为是多个连接,多个操作,复用就是字面上的意思,复用一条连接或一个线程。HTTP2这里是连接的多路复用,网络相关的还有一个I/O的多路复用(select/epoll),指通过事件驱动的方式让多个网络请求返回的数据在同一条线程里完成读写。

客户端来说,iOS9 以上 NSURLSession 原生支持 HTTP2,只要服务端也支持就可以直接使用,Android 的 okhttp3 以上也支持了 HTTP2,国内一些大型 APP 会自建网络层,支持 HTTP2 的多路复用,避免系统的限制以及根据自身业务需要增加一些特性,例如微信的开源网络库 mars,做到一条长连接处理微信上的大部分请求,多路复用的特性上基本跟 HTTP2 一致。

TCP队头阻塞 HTTP2 的多路复用看起来是完美的解决方案,但还有个问题,就是队头阻塞,这是受限于 TCP 协议,TCP 协议为了保证数据的可靠性,若传输过程中一个 TCP 包丢失,会等待这个包重传后,才会处理后续的包。HTTP2的多路复用让所有请求都在同一条连接进行,中间有一个包丢失,就会阻塞等待重传,所有请求也就被阻塞了。

对于这个问题不改变 TCP 协议就无法优化,但 TCP 协议依赖操作系统实现以及部分硬件的定制,改进缓慢,于是 GOOGLE 提出 QUIC 协议,相当于在 UDP 协议之上再定义一套可靠传输协议,解决 TCP 的一些缺陷,包括队头阻塞。QUIC协议虽然是基于UDP,但它不但具有TCP的可靠性、拥塞控制、流量控制等,QUIC 协议相对于 HTTP2 最大的优势是对TCP队头阻塞的解决,另外,QUIC协议具有TLS的安全传输特性,实现了TLS的保密功能,同时又使用更少的RTT建立安全的会话。

3 数据 第三个问题,传输数据大小的问题。数据对请求速度的影响分两方面,一是压缩率,二是解压序列化反序列化的速度。目前最流行的两种数据格式是 json 和 protobuf,json 是字符串,protobuf 是二进制,即使用各种压缩算法压缩后,protobuf 仍会比 json 小,数据量上 protobuf 有优势,序列化速度 protobuf 也有一些优势,这两者的对比就不细说了。可以看此文章protobuf 在iOS上的实践来进一步了解protobuf

压缩算法多种多样,也在不断演进,最新出的 Brotli 和Z-standard实现了更高的压缩率,Z-standard 可以根据业务数据样本训练出适合的字典,进一步提高压缩率,目前压缩率表现最好的算法。

除了传输的 body 数据,每个请求 HTTP 协议头的数据也是不可忽视,HTTP2 里对 HTTP 协议头也进行了压缩,HTTP 头大多是重复数据,固定的字段如 method 可以用静态字典,不固定但多个请求重复的字段例如 cookie 用动态字典,可以达到非常高的压缩率,这里有详细介绍。

通过 HTTPDNS,连接多路复用,更好的数据压缩算法,可以把网络请求的速度优化到较不错的程度了,接下来再看看弱网和安全上可以做的事情。

弱网

手机无线网络环境不稳定,针对弱网的优化,微信有较多实践和分享,包括:

1、 提升连接成功率 复合连接,建立连接时,阶梯式并发连接,其中一条连通后其他连接都 关闭。这个方案结合串行和并发的优势,提高弱网下的连接成功率,同时又不会增加服务器资源消耗:

2、制定最合适的超时时间 对总读写超时(从请求到响应的超时)、首包超时、包包超时(两个数据段之间的超时)时间制定不同的计算方案,加快对超时的判断,减少等待时间,尽早重试。这里的超时时间还可以根据网络状态动态设定。 3、调优TCP参数,使用TCP优化算法 对服务端的TCP协议参数进行调优,以及开启各种优化算法,使得适合业务特性和移动端网络环境,包括RTO初始值,混合慢启动,TLP,F-RTO等 针对弱网的这些细致优化未成为标准,系统网络库没有内置,不过前两个客户端优化微信的开源网络库 mars 有实现,若有需要可以使用。

安全

标准协议 TLS 保证了网络传输的安全,前身是 SSL,不断在演进,目前最新是 TLS1.3。常见的 HTTPS 就是 HTTP 协议加上 TLS 安全协议。

安全协议概括性地说解决两个问题:1.保证安全 2. 降低加密成本

在保证安全上:

1、使用加密算法组合对传输数据加密,避免被窃听和篡改。 2、认证对方身份,避免被第三方冒充。 3、加密算法保持灵活可更新,防止定死算法被破解后无法更换,禁用已被破解的算法。 降低加密成本上:

1、用对称加密算法加密传输数据,解决非对称加密算法的性能低以及长度限制问题。 2、缓存安全协议握手后的密钥等数据,加快第二次建连的速度。 3、加快握手过程:2RTT-> 0RTT。加快握手的思路,就是原本客户端和服务端需要协商使用什么算法后才能加密发送数据,变成通过内置的公钥和默认的算法,在握手的同时就把数据发出去,也就是不需要等待握手就开始发送数据,达到0RTT。 这些点涉及的细节非常多,对 TLS 的介绍有一篇雄文,说得很详细,在此推荐。

目前基本主流都支持 TLS1.2,iOS 网络库默认使用 TLS1.2,Android4.4 以上支持 1.2。TLS1.3 iOS 还处于测试阶段,Android 未查到消息。对于普通 APP,只要正确配置证书,TLS1.2 已经能保证传输安全,只是在建连速度上会有所损耗,有一些大型 APP 像微信就自行实现了 TLS1.3 的部分协议,早一步全平台支持。

本文系奥卡姆剃须刀授权发布,原文链接:https://www.jianshu.com/p/0d5c574b8eff

原文发布于微信公众号 - 何俊林(DriodDeveloper)

原文发表时间:2018-04-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏后端技术探索

nginx防止DDOS攻击配置(一)

防御DDOS是一个系统工程,攻击花样多,防御的成本高瓶颈多,防御起来即被动又无奈。DDOS的特点是分布式,针对带宽和服务攻击,也就是四层流量攻击和七层应用攻击,...

5391
来自专栏aCloudDeveloper

OVS 总体架构、源码结构及数据流程全面解析

在前文「从 Bridge 到 OVS」中,我们已经对 OVS 进行了一番探索。本文决定从 OVS 的整体架构到各个组件都进行一个详细的介绍。 OVS 架构 OV...

4275
来自专栏腾讯大数据的专栏

zookeeper 运营经验分享

Zookeeper作为TDBank系统的一个重要模块,我们运营它已经两年多。在使用过程中,我们也遇到了一些问题及走过很多弯路,本文主要对zookeeper运营经...

2859
来自专栏程序员叨叨叨

Spring in Action笔记(更新至2.2)

Web应用程序 : 是一种结构化的软件,它提供了该领域中常见的任务的自动化实现,同时作为一个内置的架构解决方案可以被在其上实现的应用程序轻松地继承。

684
来自专栏月牙寂

k8s源码分析-----kubelet(9)podWorkers

第一时间获取文章,可以关注本人公众号 月牙寂道长 yueyajidaozhang

3393
来自专栏皮振伟的专栏

[linux][storage]Linux存储栈

前言: 随着Linux的版本升高,存储栈的复杂度也随着增加。作者在这里简单介绍目前Linux存储栈。 分析: 1,storage stack ? 在用户态,可...

1.2K13
来自专栏云计算

虚拟机备份和恢复的六大最佳实践

虚拟机( virtual machine,简称 VM)的体系结构与传统的本地环境存在较大差异,因此需要不同的数据备份技术。基于此,本文将对虚拟机备份的一些最佳实...

3927
来自专栏杨建荣的学习笔记

通过celery提高crontab配置效率

今天在接入备份任务配置的时候也是一波三折,解决了业务元数据的问题,也逐步熟悉了业务,对于现有的备份情况会越来越有把握。

1832
来自专栏熊二哥

Linux快速入门04-扩展知识

这部分是快速学习的最后一部分知识,其中最重要的内容就是源码的打包和软件的安装的学习,由于个人的Linux学习目的就是自己能在阿里云Ubuntu上搭建一个简单的n...

2685
来自专栏北京马哥教育

如何用几个简单的命令改善你的Linux安全

作者:lrq110120 来源:http://richylu.blog.51cto.com/1481674/1915484 本文中,我们将讨论如何通过一些Lin...

3829

扫码关注云+社区

领取腾讯云代金券