【干货】如何评价谷歌深度学习速成课程


新智元推荐

来源:知乎

作者:mileistone

【新智元导读】谷歌最近推出的“深度学习速成课程”很火,虽然这门课程是为没有任何机器学习经验的初学者设计的,但已经跨过“初学者”门槛的专业人员也能在课程中得到启发,验证自己的理解。本文是知乎用户mileistone的课程总结。

今天浏览了一下谷歌最近推出的 “机器学习速成课程”,虽然说这门课程是为没有任何机器学习经验的初学者设计的,但是整个浏览下来之后,收获还是不小,既能通过 “检查你的直觉” 栏目里的题目考核一下自己的直觉,也能在课程中找到自己平时觉得很重要但是一般机器学习资料里面没提及的点,以此验证自己的理解。

其中于我觉得作为机器学习 / 深度学习从业者而言很重要但是容易忽视的点整理如下:

模型会拟合到测试集

以下是该课程 “检查你的直觉” 栏目的一个问题。

链接见 https://developers.google.com/machine-learning/crash-course/validation/check-your-intuition

在机器学习领域,一般会将数据集分为训练集、验证集和测试集,训练集用来训练模型,学习得到模型的权重,验证集用来挑选模型,测试集用来测试验证集挑选出来的模型。但是在深度学习领域,很多人会把验证集省略掉,只有训练集和测试集,测试集既用来挑选模型也用来测试模型。

这一点我觉得原因在于,深度学习领域从业者分为两类,一类以前是做传统机器学习的,对训练集、验证集和测试集门清,所以写论文的时候认为这是常识,就没用多少笔墨;另一类是一上来就学深度学习,对传统机器学习不甚了解的人,他们对训练集、验证集和测试集各自用途了解不深,而前一类人写论文的时候,又一笔带过,这使得一上来就学深度学习的人中不少人,把测试集当验证集和测试集用。

如果用测试集来挑选超参和测试,最后你所得到的模型很可能会过拟合到你的测试集上,超参不仅仅包括训练轮数、learning rate 的策略、momentum、weight decay 等等,还包括你所设计的网络,诸如有多少层、每一层多少个 kernel、每一层 kernel 的 size 等等。

神经网络不一定优于组合方法

在神经网络简介这门课的最后,有一张警告图。

警告:神经网络不一定始终比特征组合好,但它确实可以提供适用于很多情形的灵活替代方案。

我觉得这张警告图非常好,现在神经网络、深度学习太火了,使得很多初入门的人认为神经网络是最好的模型,做啥任务脑子里都只有神经网络。其实这是不对的,神经网络只不过是一种提供非线性能力的选择之一,它不一定是最好的,某些情况下,手工设计一些特征组合,达到的效果会比神经网络还好,同时对计算资源的消耗却会大大减小。

链接见 https://developers.google.com/machine-learning/crash-course/introduction-to-neural-networks/anatomy

特征与数据的处理的重要性

这门课里花了专门一张来讲特征和数据处理,我觉得这个也非常好,很多初学者,觉得机器学习和深度学习是万能的,只有把数据灌进去,就能得到好的结果,其实不然。这一章应该能让初学者意识到特征和数据处理的重要性。

链接见 https://developers.google.com/machine-learning/crash-course/representation/feature-engineering

https://developers.google.com/machine-learning/crash-course/representation/qualities-of-good-features

https://developers.google.com/machine-learning/crash-course/representation/cleaning-data

二分类推理时候的阈值不一定是 0.5

这一点我本来不觉得是点,但是前段时间跟一个从业者聊天,发现他在业务中使用到二分类进行推理的时候,阈值全部设置为 0.5,让我惊诧不已。他认为 “既然是二分类,那么阈值不就是 1/2=0.5 吗?”,好像直觉上还真的很容易认为是这样。今天看到谷歌这门课程里专门提到这一点,我觉得开发这个课程的谷歌工程师应该也遇到了不少我遇到的状况。

链接见 https://developers.google.com/machine-learning/crash-course/classification/thresholding

对指标的认识

这门课里有几道关于准确率、精确率、召回率、ROC、AUC 的问题,可以检查一下自己对这些指标的理解是否正确。

链接见 https://developers.google.com/machine-learning/crash-course/classification/check-your-understanding-accuracy-precision-recall

https://developers.google.com/machine-learning/crash-course/classification/check-your-understanding-roc-and-auc

Last But Not Least

这门课程里有不少 “Playground 练习”,可以让你更直观地理解机器学习中的一些问题。

(本文经授权转载自知乎,作者:mileistone)


原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2018-06-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

【深度学习Attention详解】记忆力与注意力机制讲义,复旦邱锡鹏老师《神经网络与深度学习》教程系列分享04(附pdf下载)

【导读】复旦大学副教授、博士生导师、开源自然语言处理工具FudanNLP的主要开发者邱锡鹏(http://nlp.fudan.edu.cn/xpqiu/)老师撰...

6068
来自专栏AI派

如何从文本中构建用户画像

一文告诉你什么是用户画像 介绍了到底什么是用户画像,了解了用户画像的本质是为了让机器去看之后,这里谈一谈如何从文本中构建用户画像。

5246
来自专栏IT派

机器学习新手常犯的6大错误

在刚入门的时候,均方误差作为损失函数是很好的默认选择。但是当需要处理现实问题的时候,这种未经专门设计的损失函数很少能给出最优解。

870
来自专栏LET

谈谈我对投影的理解

1526
来自专栏大数据挖掘DT机器学习

基于VGG19的识别中国人、韩国人、日本人分类器

这是本学期机器学习课程的项目。通过这个项目了解了不少东西,希望通过博客记录下整个项目过程。 ---- 国外有一个网站 http://www.alllooksam...

4556
来自专栏人工智能LeadAI

从零开始掌握Python机器学习(附不可错过的资源)

01 基 础 篇 01 基本Python 如果我们打算利用 Python 来执行机器学习,那么对 Python 有一些基本的了解就是至关重要的。幸运的是,因为 ...

3535
来自专栏人工智能

利用显著-偏置卷积神经网络处理混频时间序列

显著-偏置卷积神经网络简介 金融时间序列通常通常包含多个维度,不同维度数据的采样频率也不一致。例如螺纹钢研究员通常关心螺纹钢的因素有日频更新的现货螺纹钢价格,周...

2765
来自专栏大数据文摘

斯坦福CS231N深度学习与计算机视觉第二弹:图像分类与KNN

1534
来自专栏人工智能LeadAI

机器学习面试之有必要手推SVM吗?

01 单刀直入,先回答有必要吗? 最近和许多朋友交流,发现当前机器学习应聘时,手推SVM这道题已经越来越像快速排序一样,成为必点菜了。 那么,手推SVM是不是必...

3985
来自专栏机器之心

教程 | Keras+OpenAI强化学习实践:行为-评判模型

选自Medium 作者:Yash Patel 机器之心编译 参与:乾树、黄小天 本文先给出行为-评判模型(actor-critic model)的基本原理,包括...

3559

扫码关注云+社区