ACL 2018最佳论文公布!计算语言学最前沿研究都在这里了


新智元报道

来源:acl2018.org

编辑:闻菲、小芹

【新智元导读】ACL 会议是计算语言学领域的首要会议,广泛涉及自然语言的计算方法及其各类研究领域。ACL 2018将于7月15日至20日在澳大利亚墨尔本举行。昨天,ACL官网公布了本届大会的最佳论文,包括3篇最佳长论文和2篇最佳短论文,新智元带来介绍。

国际计算语言学协会 (ACL,The Association for Computational Linguistics),是世界上影响力最大、最具活力的国际学术组织之一,其会员遍布世界各地。ACL 会议是计算语言学领域的首要会议,广泛涉及自然语言的计算方法及其各类研究领域。计算语言学协会第56届年会,也即ACL 2018,将于7月15日至20日在澳大利亚墨尔本墨尔本会展中心举行。

昨天,ACL官网公布了本届大会的最佳论文,包括3篇长论文和2篇短论文。

Best Long Papers

  • Finding syntax in human encephalography with beam search. John Hale, Chris Dyer, Adhiguna Kuncoro and Jonathan Brennan.
  • Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information. Sudha Rao and Hal Daumé III.
  • Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers. Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

Best Short Papers

  • Know What You Don’t Know: Unanswerable Questions for SQuAD. Pranav Rajpurkar, Robin Jia and Percy Liang
  • ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions. Olivia Winn and Smaranda Muresan

根据ACL官网,今年的会议竞争超级激烈:一共接受了1018份长文中的258篇和526篇短篇论文中的126篇,总体接受率为24.9%。

最佳论文——长论文(3篇)

1. Finding syntax in human encephalography with beam search.

(使用beam search在人体脑电图中查找语法)

作者:John Hale, Chris Dyer, Adhiguna Kuncoro & Jonathan Brennan.

(论文内容尚未公布)

2. Learning to Ask Good Questions: Ranking Clarification Questions using Neural Expected Value of Perfect Information.

(学习提问好问题:使用完美信息的神经期望值排列澄清性问题。)

作者:Sudha Rao & Hal Daumé III

论文地址:https://arxiv.org/pdf/1805.04655.pdf

论文摘要

提问(inquiry)是沟通的基础。除非能提出问题,机器无法有效地与人类合作。在这项工作中,我们建立了一个神经网络模型来排序澄清性问题。我们的模型受到完美信息期望值(expected value of perfect information)的启发:一个问题好不好在于其预期答案是否有用。我们使用来自StackExchange的数据来研究这个问题。StackExchange是一个丰富的在线资源,人们在上面提问一些澄清式的问题,以便更好地为原始的帖子提供帮助。我们创建一个由大约77k帖子组成的数据集,其中每个帖子包含一个问题和回答。我们在500个样本的数据集上对我们的模型进行了评估,并与人类专家的判断进行对比,证明了模型在控制基线上得到重大改进。

模型在测试时的行为

回答生成器的训练

在500个样本数据集上测试的模型表现

3. Let’s do it “again”: A First Computational Approach to Detecting Adverbial Presupposition Triggers.

作者: Andre Cianflone, Yulan Feng, Jad Kabbara and Jackie Chi Kit Cheung.

论文地址:https://www.cs.mcgill.ca/~jkabba/acl2018paper.pdf

论文摘要

在这篇论文中,我们提出一个检测状语预设的触发器的任务,例如“also”或“again”这类词。解决个任务需要在话语语境中检测重复或类似的事件,可以应用在自然语言生成任务(例如总结和对话系统)任务。我们为该任务创建了两个新的数据集,数据来源于Penn Treebank和Annotated English Gigaword两个语料库,以及为此任务量身定制的新的注意力机制。我们的注意力机制增加了一个基线递归神经网络,而且不需要额外的可训练参数,从而最大限度地减少了计算成本。我们的工作证明,我们的模型在统计学上优于一些基线模型,包括基于LSTM的语言模型。

我们的数据集中一个包含预设触发器的样本

weighted-pooling神经网络架构

最佳论文——短论文(2篇)

1. Know What You Don’t Know: Unanswerable Questions for SQuAD.

作者:Pranav Rajpurkar, Robin Jia and Percy Liang

(论文内容未公开)

2. ‘Lighter’ Can Still Be Dark: Modeling Comparative Color Descriptions.

作者:Olivia Winn and Smaranda Muresan

(论文内容未公开)

今年的ACL开设了一个“meta conference”环节,讨论双盲评审以及 ArXiv 预印版相关话题。许多研究表明,当工作的客观价值保持不变时,单盲评审会导致评审人更偏向于某些类型的研究人员。因此,所有 ACL 会议和大多数研讨会都使用双盲评审制度。而以 ArXiv 为代表的在线预印服务器的流行,在一定程度上威胁到了双盲评审过程。

上周,ACL更新了其会议论文的投稿、评审和引用政策。其中规定,为了双盲评审的有效性,禁止投稿论文在截止日期前的1个月时间内在 arXiv 等平台公开预印本。这些新要求引起一些质疑双盲评审有效性的声音,不过,多数研究人员表示支持新政。

因此,其他几篇最佳论文,可能需要等到7月份会议召开后公开。

原文发布于微信公众号 - 新智元(AI_era)

原文发表时间:2018-06-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

手把手 | 用R分析宋词三百首 自己动手写个“机器诗人”

1977
来自专栏PPV课数据科学社区

【经典】用五个趣味案例教你数据分析的基本思想

今天和大家分享一下数据分析的一些基本思想,我给它起了个名字叫做用数据说话。内容都是个人的一些心得,比较肤浅!如有不足之处,希望大家谅解!废话不说了,现在咱正式开...

2483
来自专栏新智元

【强化学习炼金术】李飞飞高徒带你一文读懂RL来龙去脉

来源: 心有麟熙 作者: Jim 范麟熙 编辑:常佩琦 【新智元导读】斯坦福大学博士生、师从李飞飞教授的Jim Fan(范麟熙)带你一文读懂强化学习的来龙去脉。...

3979
来自专栏大数据挖掘DT机器学习

五个趣味案例教你数据分析的基本思想

今天和大家分享一下数据分析的一些基本思想,我给它起了个名字叫做用数据说话。 用数据说话,就是用真实的数据说真实的话!真实也可以理解为求真务实。那么,数据分析就是...

3966
来自专栏AI研习社

有没有必要把机器学习算法自己实现一遍?

哈哈哈哈,我觉得很多人都有这个疑问吧。机器学习好高大上,多么牛逼的东西,光是看公式就已经眼花缭乱了,总觉得自己该全部去实现一遍,有的时候太懒,有的时候觉得能力不...

3745
来自专栏量子位

拔掉机器人的一条腿,它还能学走路?| 三次元里优化的DRL策略

1072
来自专栏华章科技

概率入门:双色球中奖、购车摇号中签和德扑同花顺,哪个更容易?

导读:排列组合是我们在这本书中接触到的第一个概率论概念,也是我们在高中学过的一个概率学的入门概念。概念记不清了也不要紧,我们回忆一下在中学学过的排列组合都有哪些...

733
来自专栏大数据挖掘DT机器学习

用R语言对上海市链家二手房数据分析

via : https://mp.weixin.qq.com/s/DS4fFs0-rLD0UPkdTwQ5k 如果你手上有一批数据,你可能应用统计学、挖掘算...

3968
来自专栏AI启蒙研究院

警惕!《马航MH370调查》之阴谋论,做一个科学吃瓜群众

824
来自专栏机器学习人工学weekly

机器学习人工学2017/12/31

这周国外过节比较清净。注意下面很多链接需要开学上网,无奈国情如此 1. Facebook AML团队发文,从应用的角度披露了很多FB内部用的机器学习系统,其...

2626

扫码关注云+社区