值得收藏的27个机器学习的小抄

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

神经网络架构

来源: http://www.asimovinstitute.org/neural-network-zoo/

神经网络公园

微软 Azure 算法流程图

来源: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法

SAS 算法流程图

来源: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

SAS:我应该使用哪个机器学习算法?

算法总结

来源: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

机器学习算法指引

来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

已知的机器学习算法哪个最好?

算法优劣

来源: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

Python

自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的最好的那些小抄。

算法

来源: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

Python 基础

来源: http://datasciencefree.com/python.pdf

来源: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

Numpy

来源: https://www.dataquest.io/blog/numpy-cheat-sheet/

来源: http://datasciencefree.com/numpy.pdf

来源: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

Pandas

来源: http://datasciencefree.com/pandas.pdf

来源: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

Matplotlib

来源: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

Scikit Learn

来源: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

来源: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

来源: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb

Tensorflow

来源: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

Pytorch

来源: https://github.com/bfortuner/pytorch-cheatsheet

数学

如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。

概率

来源: http://www.wzchen.com/s/probability_cheatsheet.pdf

概率小抄 2.0

线性代数

来源: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

四页内解释线性代数

统计学

来源: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

统计学小抄

微积分

来源: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

微积分小抄

来源:网络大数据


原文发布于微信公众号 - 机器学习算法与Python学习(guodongwei1991)

原文发表时间:2018-04-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

Kaggle大神经验分享丨如何用15个月冲到排行榜的首位

在最新的Kaggle用户排行榜上,排名第一位的ID是Bestfitting,他本人叫Shubin Dai。Shubin Dai在两年前加入Kaggle,目前生活...

17330
来自专栏华章科技

LeCun:智能的精华在于预测能力!“预测学习”了解一下!

导读:在NIPS 2016大会上,著名研究者LeCun提出了预测学习(predictive learning)概念。在他的讲稿中,将机器学习比喻为“蛋糕”:

12730
来自专栏专知

【深入浅出】一篇超棒的机器学习入门文章

【链接】http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中,我将对机器学习做个概要的介绍。本文的...

37790
来自专栏数据科学与人工智能

【机器学习】读懂机器学习

在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外...

24390
来自专栏新智元

【DeepMind重大突破】DNN具有人类行为,认知心理学破解黑箱

【新智元导读】DeepMind 的最新论文称自己“首次”将认知心理学方法引入了对深度神经网络黑箱的理解研究中,并用认知心理学的方法发现了深度神经网络存有和人类儿...

34750
来自专栏CDA数据分析师

正在研究机器学习?我们帮你准备了27个小抄…

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超...

12830
来自专栏量子位

Kaggle冠军冲顶经验分享:怎样11步搞定机器学习竞赛?

最近,一名来自湖南长沙的小哥仅用15个月时间,就冲上了Kaggle用户排行榜的首位,他的ID是Bestfitting。

19930
来自专栏人工智能头条

专家观点碰撞:深度学习能否取代其他机器学习算法

17140
来自专栏智能算法

史上最强----机器学习经典总结---入门必读

导读:在本篇文章中,将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。当然,本文也面对一般读者,不会对...

48370
来自专栏CDA数据分析师

一文读懂机器学习,大数据/自然语言处理/算法全都有!

在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外...

26980

扫码关注云+社区

领取腾讯云代金券