专栏首页大数据技术学习大数据技术的发展趋势
原创

大数据技术的发展趋势

大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。这些技术下一步将如何发展?它们之中哪些技术将广为流行?又会诞生哪些新的技术?

技术趋向多样化,企业应选择接受度高和未来会快速普及的技术

目前,大数据相关的技术和工具非常多,给企业提供了更多的选择。在未来,还会继续出现新的技术和工具,如Hadoop分发、下一代数据仓库等,这也是大数据领域的创新热点。

那么企业到底该选用什么技术呢?

大数据学习群:199427210

TDWI(数据仓库研究所)对现有的大部分技术和工具进行了调查,以现在及未来三年内企业接受度和增长率两个维度进行划分,这些技术和工具可分成四类(见右图)。

企业最需要关注的是第1类中的技术和工具,它们最有可能成为最佳的实施工具,也代表了大数据技术的发展方向。

基于云的数据分析平台将更趋完善

企业越来越希望能将自己的各类应用程序及基础设施转移到云平台上。就像其他IT系统那样,大数据的分析工具和数据库也将走向云计算。

云计算能为大数据带来哪些变化呢?

首先云计算为大数据提供了可以弹性扩展、相对便宜的存储空间和计算资源,使得中小企业也可以像亚马逊一样通过云计算来完成大数据分析。

其次,云计算IT资源庞大、分布较为广泛,是异构系统较多的企业及时准确处理数据的有力方式,甚至是唯一的方式。

当然,大数据要走向云计算,还有赖于数据通信带宽的提高和云资源池的建设,需要确保原始数据能迁移到云环境以及资源池可以随需弹性扩展。

数据分析集逐步扩大,企业级数据仓库将成为主流,未来还将逐步纳入行业数据、政府公开数据等多来源数据

当人们从大数据分析中尝到甜头以后,数据分析集就会逐步扩大。目前大部分的企业所分析的数据量一般以TB为单位。按照目前数据的发展速度,很快将会进入PB时代。特别是目前在100-500TB和500+TB范围的分析数据集的数量会呈3倍或4倍增长。

随着数据分析集的扩大,以前部门层级的数据集市将不能满足大数据分析的需求,它们将成为企业级数据库(EDW)的一个子集。根据TDWI的调查,如今大概有2/3的用户已经在使用企业级数据仓库,未来这一占比将会更高。传统分析数据库可以正常持续,但是会有一些变化,一方面,数据集市和操作性数据存储(ODS)的数量会减少,另一方面,传统的数据库厂商会提升它们产品的数据容量,细目数据和数据类型,以满足大数据分析的需要。

因此,企业内的数据分析将从部门级过渡到企业级,从面向部门需求转向面向企业需求,从而也必将获得比部门视角更大的益处。

需要指出的是,随着政府和行业数据的开放,更多的外部数据将进入企业级数据仓库,使得数据仓库规模更大,数据的价值也越大。

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 大数据时代,从零学习数据思维

    其实直到3个月前,我还不知道数据分析是什么。不知道的原因是一直以来我从事的都是医学相关专业。我就是在看了一场演讲之后,毅然决定从新选择一条职业道路。

    用户2292346
  • 关于想做大数据 或者转行做大数据。

    在这里相信有许多想要学习大数据的同学,大家可以+下大数据学习裙:716加上【五8一】最后014,即可免费领取一整套系统的大数据学习教程

    用户2292346
  • 大数据零基础学习路线、用途、方向

    不过大数据学习并不是高深莫测的,虽然它并没有多简单,但是通过努力,零基础的朋友也是完全可以掌握大数据的。

    用户2292346
  • 大数据周周看 | 遭遇隔空叫板?老对头“联手”出奇招?微软这周很受伤!

    <数据猿导读> 上周,先是Salesforce上半年接连并购超过9家科技公司,被传或是向微软隔空叫板;紧接着谷歌收购云服务公司Orbitera,在后紧追不舍;然...

    数据猿
  • 大数据分析正在重新定义这5个行业

      尽管多数人知道大数据技术正为生活带来翻天覆地的变化,也可以为人们提供更多定制化体验,但仍有不少人不知道这项技术将如何造福行业。

    加米谷大数据
  • 01数据产品经理从零到一:数据产品能力模型构建

    笔者正在由电商产品经理转型数据产品经理,为了提升自己学习的效率,尝试以这种输出驱动输入的模式,将自己学习的思路和学习内容分享给大家,也希望可以与其他数据产品经理...

    用户2559057
  • 数据分析—产品经理的另一项硬技能

      大家都知道,对于产品经理的岗位要求的能力还是比较多的,如果我们对这些能力,按照硬技能和软技能进行分类的话,就有且不止以下这些能力:   软技能:沟通能力、...

    小莹莹
  • 【译文】“开放数据平台”行业协会成立,助力大数据分析!

    部分IT供应商在美国成立“开放数据平台(The open data platform, 以下简称ODP)”协会,以促进大数据技术发展。 当下,大数据分析工程似...

    CDA数据分析师
  • 技术分享:数据分析的7个步骤

    在进行真正的数据分析操作之前,要首先分析你的需要,你为什么要进行数据分析,数据分析是为了什么。

    加米谷大数据
  • 不会从大数据掘金?试试这三个方法

    大数据价值的发现与其所处的应用场景密切相关。概括起来,大数据价值发现可以划分为三大类:数据服务、数据分析和数据探索。数据服务是面向大规模用户,提供高性能的数据查...

    BestSDK

扫码关注云+社区

领取腾讯云代金券