machine learning 之 logistic regression

整理自Adrew Ng 的 machine learning课程week3

目录:

  • 二分类问题
    • 模型表示
    • decision boundary
  • 损失函数
  • 多分类问题
  • 过拟合问题和正则化
    • 什么是过拟合
    • 如何解决过拟合
    • 正则化方法

1、二分类问题

什么是二分类问题?

  • 垃圾邮件 / 非垃圾邮件?
  • 诈骗网站 / 非诈骗网站?
  • 恶性肿瘤 / 非恶性肿瘤?

用表达式来表示:$y\in\left \{ 0,1 \right \}$,

\begin{Bmatrix} 0& : & nagetive & class\\ 1& : & positive & class \end{Bmatrix}

可以用线性回归处理分类问题吗?

当用线性回归处理分类问题时,可以选取一个阈值,如图所示,比如说,当$h_\theta(x) \geq \theta^Tx$,就预测$y=1$;当$h_\theta(x) < \theta^Tx$,就预测$y=0$;

当样本只有上下的8个红色叉叉时,玫红色的直线是线性回归的结果,当选取阈值为0.5时,根据玫红色的竖线,可以将正类和负类分开,没有问题;

但是,当添加一个样本,如图中的绿色叉叉,回归线就变成了绿色的直线,这时选取0.5为阈值时,会把上面的4个红色叉叉(正类)分到负类里面去,问题很大了;

此外,在二分类问题中,y=0或者y=1,而在线性回归中,$h_\theta(x)$可以大于1,也可以小于0,这也不合理;(在逻辑回归中$0<h_\theta(x)<1$);

通过上面的例子得出结论,用线性回归做分类问题是不合理的,结果不稳定。

logistic regression模型的表示

不用线性回归模型,用逻辑回归模型:

$g(z)=\frac{1}{1+e^{-z}}$;$0<g(z)<1$。sigmoid函数 / logistic函数,函数图像如下:

$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

说明:$h_\theta(x)=P(y=1|x;\theta)$,代表估计y=1的概率;(Probability that y=1, given x, parameterized by $\theta$)

线性的Decision Boundary

 将两个类分开的边界,如下图,design boundary就是$x_1+x_2=3$;

非线性的decision boundary

以下边界为,$x_1^2+x_2^2=1$

注意到,边界是在参数确定的时候才能画出来的,它是对应着指定的参数的。

2、损失函数

如何去求模型的参数呢?

如果考虑线性回归的情况,损失函数为平方损失,对于线性回归中的简单函数,这样子定义的损失函数是个凸函数,易求解;但是在逻辑回归中,模型是个复杂的非线性函数($g(z)=\frac{1}{1+e^{-z}}$),平方损失下的损失函数不是个凸函数,有非常多的local minimal,不好求解;所以对逻辑回归,需要换个损失函数。

逻辑回归损失函数

$$cost(h_\theta(x),y)=\left\{\begin{matrix} -log(h_\theta(x)) & if \; y=1 \\ -log(1-h_\theta(x)) & if \; y=0 \end{matrix}\right.$$

当y=1时,函数图像如左图所示,当$h_\theta(x)=1$时,cost=0;当$h_\theta(x)=0$时,cost趋向于无穷大;符合逻辑;

当y=0时,函数图像如右图所示,当$h_\theta(x)=0$时,cost=0;当$h_\theta(x)=1$时,cost趋向于无穷大;符合逻辑;

最重要的是,这个函数是凸的!

简化的损失函数和梯度下降

$cost(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x))$

逻辑回归的损失函数基本上用的都是这个,为什么用这个函数?

  • 可用极大似然估计求参数
  • 凸函数
  • 和上面的损失函数是等价的

故:

$J(\theta)=-\frac{1}{m}[\sum_{i=1}^m y^{(i)}logh_\theta(x^{(i)}) + (1-y^{(i)})log(1-h_\theta(x{(i)}))]$

求参$\theta$:$\underset{\theta}{min}J(\theta)$

给定x,预测y:$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

梯度下降

$\theta_j=\theta_j-\alpha \frac{\partial J(\theta)}{\partial \theta_j}=\theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) x_j^{(i)} $

这里的参数更新形式和线性回归中是一样的,但是注意到$h_\theta(x)$是不一样的;

注意在逻辑分类模型中,feature scaling也是有用的;

高级优化方法

除了梯度下降算法,还有一些更加高级的、老练的、速度更快的优化方法:“Conjudge gradient、BFGS、L-BFGS”

3、多分类问题

邮件分类:朋友、家人、工作.......

天气:晴、多云、雨、雪.......

所分类问题的一个思路是:one-vs-all;

如下,对于有3类的多分类问题,构造3个分类函数,每次只把一个类和其他的类区别开来,$h_\theta^{(i)}(x);i=1,2,3$:

因此,每一个分类器都可以得到一个$y=i(i=1,2,3)$的概率,最大的概率的i就是类别结果,即预测为:$ \underset {i}{max} h_\theta^{(i)}(x);i=1,2,3$

4、过拟合问题和正则化

过拟合问题

如图所示,对于房价预测问题,有三个模型:

第一个模型很简单,拟合的不是很好,可以称之为“欠拟合”,有比较大的偏差(bias);

第二个模型比第一个模型复杂一点,拟合的不错,可以认为“拟合的刚刚好”;

第三个模型非常复杂,拟合的天衣无缝,可以称之为“过拟合”,又比较大的方差(variance);

过拟合说的就是第三幅图中的的问题,如果我们有很多的features,学习得到的模型可以对训练数据拟合的非常好($J(\theta) \approx 0$),但是在拟合新的数据的时候却做的不好,泛化能力弱;

类似的,在逻辑回归中:

如何解决过拟合问题?

  • 减少feature的数目
    • 可以手动的选择保留哪些feature
    • 一些自动的模型选择算法(model selection algorithm) 
  •  正则化
    • 保留所有的feature,但是reduce magnitude/values of parameters 
    • 当有很多的feature,每个都对预测有点贡献的时候,非常有用

正则化后的损失函数

如下图所示,逻辑上,当在原本的损失函数后加惩罚项的话,$\theta_3$和$\theta_4$就会变得十分的小,这样虽然模型复杂,但是高阶的部分其实非常小,就类似于低阶的函数;

正则化“简化”了模型,使得模型过拟合的倾向减小;

正则化线性回归:

$J(\theta)=\frac{1}{2m} [\sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2]$

注意到,当$\lambda$非常大的时候,可以会出现欠拟合的情况;

 此时的梯度下降算法的更新为:

$\theta_0=\theta_0-\alpha  \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_0^{(i)} $

$\theta_j=\theta_j-\alpha [ \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} + \frac{\lambda}{m}\theta_j] $;j=1,2,.....n;

注意:$\theta_0$是不更新的

注意到:

$\theta_j=\theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}  $

$1 - \alpha\frac{\lambda}{m}$是个极其接近1的数字,可能是0.99,所以正则化后的更新策略和之前的对比,就是让$\theta_j$更小了一些;

Normal Equation

$$\theta=(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))^{-1}x^Ty$$

在无正则化的线性回归问题中,Normal Equation存在一个不可逆的问题,但是可以证明$(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))$是可逆的;

正则化的logistic regression

与线性回归的正则化一样,只要把模型函数($h_\theta(x)$)换了即可

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT派

福利 | 纵览机器学习基本词汇与概念

机器之心曾开放过人工智能术语集 ,该术语库项目目前收集了人工智能领域 700 多个专业术语,但仍需要与各位读者共同完善与修正。本文编译自谷歌开发者机器学习术语表...

3819
来自专栏机器学习算法与Python学习

Word2Vec —— 深度学习的一小步,自然语言处理的一大步

1465
来自专栏机器学习原理

机器学习(3)——回归模型目标函数多项式扩展正则项机器学习调参

前言:紧接上一篇文章结尾,预测值和真实值存在较大差距,接着介绍用多项式权重来提高拟合度(R2),过拟合解决办法,引出正则项L1和L2,Ridge回归和LASSO...

3115
来自专栏技术小站

吴恩达深度学习笔记 course2 week3 超参数调试,Batch Norm,和程序框架

一般而言,在调试超参数的过程中,我们通常将学习率learning_rate看作是最重要的一个超参数,其次是动量梯度下降因子β(一般为0.9),隐藏层单元个数,m...

862
来自专栏人工智能

机器学习三人行-Logistic和Softmax回归实战剖析

关注公众号“智能算法”即可一起学习整个系列的文章 本文主要实战Logistic回归和softmax回归在iris数据集上的应用,通过该文章,希望我们能一起掌握该...

1926
来自专栏魏晓蕾的专栏

【机器学习】CS229课程笔记notes2翻译-Part IV生成学习算法

      到目前为止,我们主要谈论建模p(y|x;θ)的学习算法,给定x的y的条件分布。例如,logistic回归建模p(y|x;θ)为hθ(x)=g(θTx...

2206
来自专栏数据派THU

开发者必看:超全机器学习术语词汇表!

来源:机器之心 本文长度为12243字,建议阅读8分钟 本文编译自谷歌开发者机器学习术语表项目,介绍了该项目所有的术语与基本解释。 A 准确率(accuracy...

2916
来自专栏机器人网

人工智能领域 700 多个专业术语-谷歌开发者机器学习词汇表

本文为机器之心编译:该术语库项目目前收集了人工智能领域 700 多个专业术语,但仍需要与各位读者共同完善与修正。本文编译自谷歌开发者机器学习术语表项目,介绍了该...

2848
来自专栏机器学习与自然语言处理

Stanford机器学习笔记-9. 聚类(Clustering)

9. Clustering  Content   9. Clustering     9.1 Supervised Learning and Unsupe...

35611
来自专栏ArrayZoneYour的专栏

用Python从零开始构建反向传播算法

在本教程中,你将探索如何使用Python从零开始构建反向传播算法。

6759

扫码关注云+社区