machine learning 之 logistic regression

整理自Adrew Ng 的 machine learning课程week3

目录:

  • 二分类问题
    • 模型表示
    • decision boundary
  • 损失函数
  • 多分类问题
  • 过拟合问题和正则化
    • 什么是过拟合
    • 如何解决过拟合
    • 正则化方法

1、二分类问题

什么是二分类问题?

  • 垃圾邮件 / 非垃圾邮件?
  • 诈骗网站 / 非诈骗网站?
  • 恶性肿瘤 / 非恶性肿瘤?

用表达式来表示:$y\in\left \{ 0,1 \right \}$,

\begin{Bmatrix} 0& : & nagetive & class\\ 1& : & positive & class \end{Bmatrix}

可以用线性回归处理分类问题吗?

当用线性回归处理分类问题时,可以选取一个阈值,如图所示,比如说,当$h_\theta(x) \geq \theta^Tx$,就预测$y=1$;当$h_\theta(x) < \theta^Tx$,就预测$y=0$;

当样本只有上下的8个红色叉叉时,玫红色的直线是线性回归的结果,当选取阈值为0.5时,根据玫红色的竖线,可以将正类和负类分开,没有问题;

但是,当添加一个样本,如图中的绿色叉叉,回归线就变成了绿色的直线,这时选取0.5为阈值时,会把上面的4个红色叉叉(正类)分到负类里面去,问题很大了;

此外,在二分类问题中,y=0或者y=1,而在线性回归中,$h_\theta(x)$可以大于1,也可以小于0,这也不合理;(在逻辑回归中$0<h_\theta(x)<1$);

通过上面的例子得出结论,用线性回归做分类问题是不合理的,结果不稳定。

logistic regression模型的表示

不用线性回归模型,用逻辑回归模型:

$g(z)=\frac{1}{1+e^{-z}}$;$0<g(z)<1$。sigmoid函数 / logistic函数,函数图像如下:

$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

说明:$h_\theta(x)=P(y=1|x;\theta)$,代表估计y=1的概率;(Probability that y=1, given x, parameterized by $\theta$)

线性的Decision Boundary

 将两个类分开的边界,如下图,design boundary就是$x_1+x_2=3$;

非线性的decision boundary

以下边界为,$x_1^2+x_2^2=1$

注意到,边界是在参数确定的时候才能画出来的,它是对应着指定的参数的。

2、损失函数

如何去求模型的参数呢?

如果考虑线性回归的情况,损失函数为平方损失,对于线性回归中的简单函数,这样子定义的损失函数是个凸函数,易求解;但是在逻辑回归中,模型是个复杂的非线性函数($g(z)=\frac{1}{1+e^{-z}}$),平方损失下的损失函数不是个凸函数,有非常多的local minimal,不好求解;所以对逻辑回归,需要换个损失函数。

逻辑回归损失函数

$$cost(h_\theta(x),y)=\left\{\begin{matrix} -log(h_\theta(x)) & if \; y=1 \\ -log(1-h_\theta(x)) & if \; y=0 \end{matrix}\right.$$

当y=1时,函数图像如左图所示,当$h_\theta(x)=1$时,cost=0;当$h_\theta(x)=0$时,cost趋向于无穷大;符合逻辑;

当y=0时,函数图像如右图所示,当$h_\theta(x)=0$时,cost=0;当$h_\theta(x)=1$时,cost趋向于无穷大;符合逻辑;

最重要的是,这个函数是凸的!

简化的损失函数和梯度下降

$cost(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x))$

逻辑回归的损失函数基本上用的都是这个,为什么用这个函数?

  • 可用极大似然估计求参数
  • 凸函数
  • 和上面的损失函数是等价的

故:

$J(\theta)=-\frac{1}{m}[\sum_{i=1}^m y^{(i)}logh_\theta(x^{(i)}) + (1-y^{(i)})log(1-h_\theta(x{(i)}))]$

求参$\theta$:$\underset{\theta}{min}J(\theta)$

给定x,预测y:$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

梯度下降

$\theta_j=\theta_j-\alpha \frac{\partial J(\theta)}{\partial \theta_j}=\theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) x_j^{(i)} $

这里的参数更新形式和线性回归中是一样的,但是注意到$h_\theta(x)$是不一样的;

注意在逻辑分类模型中,feature scaling也是有用的;

高级优化方法

除了梯度下降算法,还有一些更加高级的、老练的、速度更快的优化方法:“Conjudge gradient、BFGS、L-BFGS”

3、多分类问题

邮件分类:朋友、家人、工作.......

天气:晴、多云、雨、雪.......

所分类问题的一个思路是:one-vs-all;

如下,对于有3类的多分类问题,构造3个分类函数,每次只把一个类和其他的类区别开来,$h_\theta^{(i)}(x);i=1,2,3$:

因此,每一个分类器都可以得到一个$y=i(i=1,2,3)$的概率,最大的概率的i就是类别结果,即预测为:$ \underset {i}{max} h_\theta^{(i)}(x);i=1,2,3$

4、过拟合问题和正则化

过拟合问题

如图所示,对于房价预测问题,有三个模型:

第一个模型很简单,拟合的不是很好,可以称之为“欠拟合”,有比较大的偏差(bias);

第二个模型比第一个模型复杂一点,拟合的不错,可以认为“拟合的刚刚好”;

第三个模型非常复杂,拟合的天衣无缝,可以称之为“过拟合”,又比较大的方差(variance);

过拟合说的就是第三幅图中的的问题,如果我们有很多的features,学习得到的模型可以对训练数据拟合的非常好($J(\theta) \approx 0$),但是在拟合新的数据的时候却做的不好,泛化能力弱;

类似的,在逻辑回归中:

如何解决过拟合问题?

  • 减少feature的数目
    • 可以手动的选择保留哪些feature
    • 一些自动的模型选择算法(model selection algorithm) 
  •  正则化
    • 保留所有的feature,但是reduce magnitude/values of parameters 
    • 当有很多的feature,每个都对预测有点贡献的时候,非常有用

正则化后的损失函数

如下图所示,逻辑上,当在原本的损失函数后加惩罚项的话,$\theta_3$和$\theta_4$就会变得十分的小,这样虽然模型复杂,但是高阶的部分其实非常小,就类似于低阶的函数;

正则化“简化”了模型,使得模型过拟合的倾向减小;

正则化线性回归:

$J(\theta)=\frac{1}{2m} [\sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2]$

注意到,当$\lambda$非常大的时候,可以会出现欠拟合的情况;

 此时的梯度下降算法的更新为:

$\theta_0=\theta_0-\alpha  \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_0^{(i)} $

$\theta_j=\theta_j-\alpha [ \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} + \frac{\lambda}{m}\theta_j] $;j=1,2,.....n;

注意:$\theta_0$是不更新的

注意到:

$\theta_j=\theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}  $

$1 - \alpha\frac{\lambda}{m}$是个极其接近1的数字,可能是0.99,所以正则化后的更新策略和之前的对比,就是让$\theta_j$更小了一些;

Normal Equation

$$\theta=(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))^{-1}x^Ty$$

在无正则化的线性回归问题中,Normal Equation存在一个不可逆的问题,但是可以证明$(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))$是可逆的;

正则化的logistic regression

与线性回归的正则化一样,只要把模型函数($h_\theta(x)$)换了即可

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Hongten

ArrayList VS Vector(ArrayList和Vector的区别)_面试的时候经常出现

1682
来自专栏聊聊技术

原 初学图论-Kahn拓扑排序算法(Kah

2878
来自专栏xingoo, 一个梦想做发明家的程序员

20120918-向量实现《数据结构与算法分析》

#include <iostream> #include <list> #include <string> #include <vector> #include...

1716
来自专栏学海无涯

Android开发之奇怪的Fragment

说起Android中的Fragment,在使用的时候稍加注意,就会发现存在以下两种: v4包中的兼容Fragment,android.support.v4.ap...

3155
来自专栏xingoo, 一个梦想做发明家的程序员

Spark踩坑——java.lang.AbstractMethodError

百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-...

1200
来自专栏赵俊的Java专栏

从源码上分析 ArrayList

1161
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

2517
来自专栏ml

朴素贝叶斯分类器(离散型)算法实现(一)

1. 贝叶斯定理:        (1)   P(A^B) = P(A|B)P(B) = P(B|A)P(A)   由(1)得    P(A|B) = P(B|...

3427
来自专栏Java Edge

AbstractList源码解析1 实现的方法2 两种内部迭代器3 两种内部类3 SubList 源码分析4 RandomAccessSubList 源码:AbstractList 作为 Lis

它实现了 List 的一些位置相关操作(比如 get,set,add,remove),是第一个实现随机访问方法的集合类,但不支持添加和替换

422
来自专栏计算机视觉与深度学习基础

Leetcode 114 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given...

1938

扫码关注云+社区