前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >machine learning 之 logistic regression

machine learning 之 logistic regression

作者头像
Echo_fy
发布2018-07-03 12:30:12
3190
发布2018-07-03 12:30:12
举报
文章被收录于专栏:Echo is learningEcho is learning

整理自Adrew Ng 的 machine learning课程week3

目录:

  • 二分类问题
    • 模型表示
    • decision boundary
  • 损失函数
  • 多分类问题
  • 过拟合问题和正则化
    • 什么是过拟合
    • 如何解决过拟合
    • 正则化方法

1、二分类问题

什么是二分类问题?

  • 垃圾邮件 / 非垃圾邮件?
  • 诈骗网站 / 非诈骗网站?
  • 恶性肿瘤 / 非恶性肿瘤?

用表达式来表示:$y\in\left \{ 0,1 \right \}$,

\begin{Bmatrix} 0& : & nagetive & class\\ 1& : & positive & class \end{Bmatrix}

可以用线性回归处理分类问题吗?

当用线性回归处理分类问题时,可以选取一个阈值,如图所示,比如说,当$h_\theta(x) \geq \theta^Tx$,就预测$y=1$;当$h_\theta(x) < \theta^Tx$,就预测$y=0$;

当样本只有上下的8个红色叉叉时,玫红色的直线是线性回归的结果,当选取阈值为0.5时,根据玫红色的竖线,可以将正类和负类分开,没有问题;

但是,当添加一个样本,如图中的绿色叉叉,回归线就变成了绿色的直线,这时选取0.5为阈值时,会把上面的4个红色叉叉(正类)分到负类里面去,问题很大了;

此外,在二分类问题中,y=0或者y=1,而在线性回归中,$h_\theta(x)$可以大于1,也可以小于0,这也不合理;(在逻辑回归中$0<h_\theta(x)<1$);

通过上面的例子得出结论,用线性回归做分类问题是不合理的,结果不稳定。

logistic regression模型的表示

不用线性回归模型,用逻辑回归模型:

$g(z)=\frac{1}{1+e^{-z}}$;$0<g(z)<1$。sigmoid函数 / logistic函数,函数图像如下:

$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

说明:$h_\theta(x)=P(y=1|x;\theta)$,代表估计y=1的概率;(Probability that y=1, given x, parameterized by $\theta$)

线性的Decision Boundary

 将两个类分开的边界,如下图,design boundary就是$x_1+x_2=3$;

非线性的decision boundary

以下边界为,$x_1^2+x_2^2=1$

注意到,边界是在参数确定的时候才能画出来的,它是对应着指定的参数的。

2、损失函数

如何去求模型的参数呢?

如果考虑线性回归的情况,损失函数为平方损失,对于线性回归中的简单函数,这样子定义的损失函数是个凸函数,易求解;但是在逻辑回归中,模型是个复杂的非线性函数($g(z)=\frac{1}{1+e^{-z}}$),平方损失下的损失函数不是个凸函数,有非常多的local minimal,不好求解;所以对逻辑回归,需要换个损失函数。

逻辑回归损失函数

$$cost(h_\theta(x),y)=\left\{\begin{matrix} -log(h_\theta(x)) & if \; y=1 \\ -log(1-h_\theta(x)) & if \; y=0 \end{matrix}\right.$$

当y=1时,函数图像如左图所示,当$h_\theta(x)=1$时,cost=0;当$h_\theta(x)=0$时,cost趋向于无穷大;符合逻辑;

当y=0时,函数图像如右图所示,当$h_\theta(x)=0$时,cost=0;当$h_\theta(x)=1$时,cost趋向于无穷大;符合逻辑;

最重要的是,这个函数是凸的!

简化的损失函数和梯度下降

$cost(h_\theta(x),y)=-ylog(h_\theta(x))-(1-y)log(1-h_\theta(x))$

逻辑回归的损失函数基本上用的都是这个,为什么用这个函数?

  • 可用极大似然估计求参数
  • 凸函数
  • 和上面的损失函数是等价的

故:

$J(\theta)=-\frac{1}{m}[\sum_{i=1}^m y^{(i)}logh_\theta(x^{(i)}) + (1-y^{(i)})log(1-h_\theta(x{(i)}))]$

求参$\theta$:$\underset{\theta}{min}J(\theta)$

给定x,预测y:$h_\theta(x)=\frac{1}{1+e^{-\theta^Tx}}$

梯度下降

$\theta_j=\theta_j-\alpha \frac{\partial J(\theta)}{\partial \theta_j}=\theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)}) x_j^{(i)} $

这里的参数更新形式和线性回归中是一样的,但是注意到$h_\theta(x)$是不一样的;

注意在逻辑分类模型中,feature scaling也是有用的;

高级优化方法

除了梯度下降算法,还有一些更加高级的、老练的、速度更快的优化方法:“Conjudge gradient、BFGS、L-BFGS”

3、多分类问题

邮件分类:朋友、家人、工作.......

天气:晴、多云、雨、雪.......

所分类问题的一个思路是:one-vs-all;

如下,对于有3类的多分类问题,构造3个分类函数,每次只把一个类和其他的类区别开来,$h_\theta^{(i)}(x);i=1,2,3$:

因此,每一个分类器都可以得到一个$y=i(i=1,2,3)$的概率,最大的概率的i就是类别结果,即预测为:$ \underset {i}{max} h_\theta^{(i)}(x);i=1,2,3$

4、过拟合问题和正则化

过拟合问题

如图所示,对于房价预测问题,有三个模型:

第一个模型很简单,拟合的不是很好,可以称之为“欠拟合”,有比较大的偏差(bias);

第二个模型比第一个模型复杂一点,拟合的不错,可以认为“拟合的刚刚好”;

第三个模型非常复杂,拟合的天衣无缝,可以称之为“过拟合”,又比较大的方差(variance);

过拟合说的就是第三幅图中的的问题,如果我们有很多的features,学习得到的模型可以对训练数据拟合的非常好($J(\theta) \approx 0$),但是在拟合新的数据的时候却做的不好,泛化能力弱;

类似的,在逻辑回归中:

如何解决过拟合问题?

  • 减少feature的数目
    • 可以手动的选择保留哪些feature
    • 一些自动的模型选择算法(model selection algorithm) 
  •  正则化
    • 保留所有的feature,但是reduce magnitude/values of parameters 
    • 当有很多的feature,每个都对预测有点贡献的时候,非常有用

正则化后的损失函数

如下图所示,逻辑上,当在原本的损失函数后加惩罚项的话,$\theta_3$和$\theta_4$就会变得十分的小,这样虽然模型复杂,但是高阶的部分其实非常小,就类似于低阶的函数;

正则化“简化”了模型,使得模型过拟合的倾向减小;

正则化线性回归:

$J(\theta)=\frac{1}{2m} [\sum_{i=1}^m (h_\theta(x^{(i)})-y^{(i)})^2 + \lambda \sum_{j=1}^n \theta_j^2]$

注意到,当$\lambda$非常大的时候,可以会出现欠拟合的情况;

 此时的梯度下降算法的更新为:

$\theta_0=\theta_0-\alpha  \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_0^{(i)} $

$\theta_j=\theta_j-\alpha [ \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)} + \frac{\lambda}{m}\theta_j] $;j=1,2,.....n;

注意:$\theta_0$是不更新的

注意到:

$\theta_j=\theta_j(1 - \alpha\frac{\lambda}{m}) - \alpha \frac{1}{m} (h_\theta(x^{(i)})-y^{(i)})x_j^{(i)}  $

$1 - \alpha\frac{\lambda}{m}$是个极其接近1的数字,可能是0.99,所以正则化后的更新策略和之前的对比,就是让$\theta_j$更小了一些;

Normal Equation

$$\theta=(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))^{-1}x^Ty$$

在无正则化的线性回归问题中,Normal Equation存在一个不可逆的问题,但是可以证明$(x^Tx+\lambda\begin{bmatrix} 0 & & &\\  & 1 & & \\ & & 1 & \\ & & &... \end{bmatrix}))$是可逆的;

正则化的logistic regression

与线性回归的正则化一样,只要把模型函数($h_\theta(x)$)换了即可

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-04-09 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档