【小工匠聊密码学】--消息摘要--SHA3算法

1、SHA3概述

1.1 SHA3简介

由于近年来对传统常用Hash 函数如MD4、MD5、SHA0、SHA1、RIPENMD 等的成功攻击,美国国家标准技术研究所(NIST)在2005年、2006年分别举行了2届密码Hash 研讨会;同时于2007年正式宣布在全球范围内征集新的下一代密码Hash算法,举行SHA-3竞赛·新的Hash算法将被称为SHA-3,并且作为新的安全Hash标准,增强现有的FIPS 180-2标准。算法提交已于2008年10月结束,NIST 将分别于2009年和2010年举行2轮会议,通过2轮的筛选选出进入最终轮(final round)的算法,最后将在2012年公布获胜算法。公开竞赛的整个进程仿照高级加密标准AES 的征集过程。2012年10月2日,Keccak被选为NIST竞赛的胜利者, 成为SHA-3.。

1.2 SHA3作者

Keccak算法由意法[半导体] 的Guido Bertoni、Joan Daemen(AES算法合作者)和Gilles Van Assche,以及恩智浦半导体的Michaël Peeters联合开发。NIST计算机安全专家Tim Polk说,Keccak的优势在于它与SHA-2设计上存在极大差别,适用于SHA-2的攻击方法将不能作用于Keccak。

1.3 海绵引擎

Keccak的海绵结构中,输入的数据在进行填充后,要经过吸收阶段和挤出阶段,最终生成输出的散列值。 “海绵结构”这个名字听上去有点怪,请大家想象一下将一块海绵泡在水里吸水,然后再将里面的水挤出来的情形。同样地,Keccak 的海绵结构是先将输入的消息吸收到内部状态中,然后再根据内部状态挤出相应的散列值。

1.4 实现难度

Keccak采用了创新的的“海绵引擎”散列消息文本。它是快速的,在英特尔酷睿2处理器下的平均速度为12.5周期每字节。它设计简单,方便硬件实现。

1.5 防攻击

Keccak已可以抵御最小的复杂度为2n的攻击,其中N为散列的大小。它具有广泛的安全边际。至目前为止,第三方密码分析已经显示出Keccak没有严重的弱点。

2、SHA3 算法实现

package lzf.cipher.bc;

import java.nio.charset.Charset;

import org.bouncycastle.crypto.Digest;
import org.bouncycastle.crypto.digests.SHA3Digest;
import org.bouncycastle.crypto.digests.SHAKEDigest;
import org.bouncycastle.util.encoders.Hex;

/**
 * @author Java 小工匠
 */
public class BCSha3Utils {

    // SHA3-224 算法
    public static String sha3224(byte[] bytes) {
        Digest digest = new SHA3Digest(224);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-256 算法
    public static String sha3256(byte[] bytes) {
        Digest digest = new SHA3Digest(256);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-384 算法
    public static String sha3384(byte[] bytes) {
        Digest digest = new SHA3Digest(384);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHA3-512 算法
    public static String sha3512(byte[] bytes) {
        Digest digest = new SHA3Digest(512);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHAKE-128 算法
    public static String shake128(byte[] bytes) {
        Digest digest = new SHAKEDigest(128);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    // SHAKE-256 算法
    public static String shake256(byte[] bytes) {
        Digest digest = new SHAKEDigest(256);
        digest.update(bytes, 0, bytes.length);
        byte[] rsData = new byte[digest.getDigestSize()];
        digest.doFinal(rsData, 0);
        return Hex.toHexString(rsData);
    }

    public static void main(String[] args) {
        byte[] bytes = "java小工匠".getBytes(Charset.forName("UTF-8"));
        String sha3224 = sha3224(bytes);
        System.out.println("sha3-224:" + sha3224 + ",lengh=" + sha3224.length());
        String sha3256 = sha3256(bytes);
        System.out.println("sha3-256:" + sha3256 + ",lengh=" + sha3256.length());
        String sha3384 = sha3384(bytes);
        System.out.println("sha3-384:" + sha3384 + ",lengh=" + sha3384.length());
        String sha3512 = sha3512(bytes);
        System.out.println("sha3-512:" + sha3512 + ",lengh=" + sha3512.length());
        String shake128 = shake128(bytes);
        System.out.println("shake-128:" + shake128 + ",lengh=" + shake128.length());
        String shake256 = shake256(bytes);
        System.out.println("shake-256:" + shake256 + ",lengh=" + shake256.length());
    }
}

如果读完觉得有收获的话,欢迎点赞、关注、加公众号【小工匠技术圈】

原文发布于微信公众号 - 小工匠技术圈(xgn177971793771)

原文发表时间:2018-07-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏后端技术探索

业务id转密文短链的一种实现思路

买家通过电商app下单后,会受到一条短信,短信内容中包括改订单详情页面的h5地址连接,因为是出现在短信中,所以对连接有要求:1.尽量短;2.安全性考虑,订单在数...

913
来自专栏数据结构与算法

2594 解药还是毒药

时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果 题目描述 Description Smart研...

3155
来自专栏编程一生

架构师之路--从原理角度来分析性能

  埃及艳后Cleopatra,很小的时候看过妈妈买的一本书里把她的名字翻译成克娄巴特拉,里面有很多描写她美貌的场景描写。然而这个以美貌著称的奇女子,我看到书里...

772
来自专栏安智客

密码技术之单向散列函数

单向散列函数(one-way hash function),也称为消息摘要函数(message digest function)、哈希函数、杂凑函数,是指输入消...

1383
来自专栏黑白安全

神奇弱口令!

123456、a123456、123456a、5201314、111111、woaini1314、qq123456、123123

833
来自专栏草根专栏

RxJS速成 (上)

What is RxJS? RxJS是ReactiveX编程理念的JavaScript版本。ReactiveX是一种针对异步数据流的编程。简单来说,它将一切数据...

2844
来自专栏一个会写诗的程序员的博客

《Kotlin 反应式编程》使用 RxKotlin 实现一个极简的 http DSL ( Reactive Programming Using Rx Kotlin )《Kotlin 反应式编程》使用

我们现在已经基本知道 Kotlin 中 DSL 的样子了。但是这些 DSL 都是怎样实现的呢?本节我们就通过实现一个极简的http DSL来学习创建 DSL 背...

1702
来自专栏一个会写诗的程序员的博客

在 Java 9 的JShell中 跟Kotlin 的REPL中尽情体验函数式编程乐趣吧《Kotlin极简教程》正式上架:

相比之下, 我们不得不说,Java 8,9中的 Stream API 还是有点啰嗦,绕来绕去。不如Kotlin来得直截了当,简单优雅。

861
来自专栏牛客网

美团JAVA开发4面面经

【每日一语】不要回头。那个时候,是自己下定了决心,自己选择了道路了吧。那就不要道歉,不要哭,不要彷徨,只注视着前方前进就好。——《银魂》

1162
来自专栏司想君

前端也要学系列:设计模式之装饰者模式

今天我们来讲另外一个非常实用的设计模式:装饰者模式。这个名字听上去有些莫名其妙,不着急,我们先来记住它的一个别名:包装器模式。

862

扫码关注云+社区