入门 | Tensorflow实战讲解神经网络搭建详细过程

作者 | AI小昕

编辑 | 磐石

出品 | 磐创AI技术团队

【磐创AI导读】:本文详细介绍了神经网络在实战过程中的构建与调节方式。主欢迎大家点击上方蓝字关注我们的公众号:磐创AI。点击公众号下方文章精选系列文章了解更多。

之前我们讲了神经网络的起源、单层神经网络、多层神经网络的搭建过程、搭建时要注意到的具体问题、以及解决这些问题的具体方法。本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神经网络的整个过程。

、MNIST手写数字数据集介绍

MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一,通常这个数据集都会被作为深度学习的入门案例。数据集中的数字图片是由250个不同职业的人纯手写绘制,数据集获取的网址为:http://yann.lecun.com/exdb/mnist/。(下载后需解压)

具体来看,MNIST手写数字数据集包含有60000张图片作为训练集数据,10000张图片作为测试集数据,且每一个训练元素都是28*28像素的手写数字图片,每一张图片代表的是从0到9中的每个数字。该数据集样例如下图所示:

如果我们把每一张图片中的像素转换为向量,则得到长度为28*28=784的向量。因此我们可以把MNIST数据训练集看作是一个[60000,784]的张量,第一个维度表示图片的索引,第二个维度表示每张图片中的像素点。而图片里的每个像素点的值介于0-1之间。如下图所示:

此外,MNIST数据集的类标是介于0-9的数字,共10个类别。通常我们要用独热编码(One_Hot Encoding)的形式表示这些类标。所谓的独热编码,直观的讲就是用N个维度来对N个类别进行编码,并且对于每个类别,只有一个维度有效,记作数字1 ;其它维度均记作数字0。例如类标1表示为:([0,1,0,0,0,0,0,0,0,0]);同理标签2表示为:([0,0,1,0,0,0,0,0,0,0])。最后我们通过softmax函数输出的是每张图片属于10个类别的概率。

二 、网络结构的设计

接下来通过Tensorflow代码,实现MINIST手写数字识别的过程。首先,如程序1所示,我们导入程序所需要的库函数、数据集: 程序1:

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

接下来,我们读取MNIST数据集,并指定用one_hot的编码方式;然后定义batch_size、batch_num两个变量,分别代表一次性传入神经网络进行训练的批次大小,以及计算出训练的次数。如程序2所示:

程序2:

mnist_data=input_data.read_data_sets("MNIST.data",one_hot=True)

batch_size=100

batch_num=mnist_data.train.num_examples//batch_size

我们需要注意的是:在执行第一句命令时,就会从默认的地方下载MNIST数据集,下载下来的数据集会以压缩包的形式存到指定目录,如下图所示。这些数据分别代表了训练集、训练集标签、测试集、测试集标签。

接着我们定义两个placeholder,程序如下所示:

程序3:

x = tf.placeholder(tf.float32,[None,784])

y = tf.placeholder(tf.float32,[None,10])

其中,x代表训练数据,y代表标签。具体来看,我们会把训练集中的图片以batch_size批次大小,分批传入到第一个参数中(默认为None);X的第二个参数代表把图片转换为长度为784的向量;Y的第二个参数表示10个不同的类标。

接下来我们就可以开始构建一个简单的神经网络了,首先定义各层的权重w和偏执b。如程序4所示:

程序4:

weights = {

'hidden_1': tf.Variable(tf.random_normal([784, 256])),

'out': tf.Variable(tf.random_normal([256, 10]))

}

biases = {

'b1': tf.Variable(tf.random_normal([256])),

'out': tf.Variable(tf.random_normal([10]))

}

因为我们准备搭建一个含有一个隐藏层结构的神经网络(当然也可以搭建两个或是多个隐层的神经网络),所以先要设置其每层的w和b。如上程序所示,该隐藏层含有256个神经元。接着我们就可以开始搭建每一层神经网络了: 程序5:

def neural_network(x):

hidden_layer_1 = tf.add(tf.matmul(x, weights['hidden_1']), biases['b1'])

out_layer = tf.matmul(hidden_layer_1, weights['out']) + biases['out']

return out_layer

如程序5所示,我们定义了一个含有一个隐藏层神经网络的函数neural_network,函数的返回值是输出层的输出结果。

接下来我们定义损失函数、优化器以及计算准确率的方法。

程序6:

#调用神经网络

result = neural_network(x)

#预测类别

prediction = tf.nn.softmax(result)

#平方差损失函数

loss = tf.reduce_mean(tf.square(y-prediction))

#梯度下降法

train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#预测类标

correct_pred = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#计算准确率

accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

#初始化变量

init = tf.global_variables_initializer()

如程序6所示:首先使用softmax函数对结果进行预测,然后选择平方差损失函数计算出loss,再使用梯度下降法的优化方法对loss进行最小化(梯度下降法的学习率设置为0.2)。接着使用argmax函数返回最大的值所在的位置,再使用equal函数与正确的类标进行比较,返回一个bool值,代表预测正确或错误的类标;最后使用cast函数把bool类型的预测结果转换为float类型(True转换为1,False转换为0),并对所有预测结果统计求平均值,算出最后的准确率。要注意:最后一定不要忘了对程序中的所有变量进行初始化。

最后一步,我们启动Tensorflow默认会话,执行上述过程。代码如下所示:

程序7:

step_num=400

with tf.Session() as sess:

sess.run(init)

for step in range(step_num+1):

for batch in range(batch_num):

batch_x,batch_y = mnist_data.train.next_batch(batch_size)

sess.run(train_step,feed_dict={x:batch_x,y:batch_y})

acc = sess.run(accuracy,feed_dict={x:mnist_data.test.images,y:mnist_data.test.labels})

print("Step " + str(step) + ",Training Accuracy "+ "{:.3f}" + str(acc))

print("Finished!")

上述程序定义了MNIST数据集的运行阶段,首先我们定义迭代的周期数,往往开始的时候准确率会随着迭代次数快速提高,但渐渐地随着迭代次数的增加,准确率提升的幅度会越来越小。而对于每一轮的迭代过程,我们用不同批次的图片进行训练,每次训练100张图片,每次训练的图片数据和对应的标签分别保存在 batch_x、batch_y中,接着再用run方法执行这个迭代过程,并使用feed_dict的字典结构填充每次的训练数据。循环往复上述过程,直到最后一轮的训练结束。

最后我们利用测试集的数据检验训练的准确率,feed_dict填充的数据分别是测试集的图片数据和测试集图片对应的标签。输出结果迭代次数和准确率,完成训练过程。我们截取400次的训练结果,如下图所示:

以上我们便完成了MNIST手写数字识别模型的训练,接下来可以从以下几方面对模型进行改良和优化,以提高模型的准确率。

首先,在计算损失函数时,可以选择交叉熵损失函数来代替平方差损失函数,通常在Tensorflow深度学习中,softmax_cross_entropy_with_logits函数会和softmax函数搭配使用,是因为交叉熵在面对多分类问题时,迭代过程中权值和偏置值的调整更加合理,模型收敛的速度更加快,训练的的效果也更加好。代码如下所示:

程序8:

#预测类别

prediction = tf.nn.softmax(result)

#交叉熵损失函数

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))

#梯度下降法

train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)

#预测类标

correct_pred = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))

#计算准确率

accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))

如程序8所示:我们把两个参数:类标y以及模型的预测值prediction,传入到交叉熵损失函数softmax_cross_entropy_with_logits中,然后对函数的输出结果求平均值,再使用梯度下降法进行优化。最终的准确率如下图所示:

我们可以明显看到,使用交叉熵损失函数对于模型准确率的提高还是显而易见的,训练过程迭代200次的准确率已经超过了平方差损失函数迭代400次的准确率。

除了改变损失函数,我们还可以改变优化算法。例如使用adam优化算法代替随机梯度下降法,因为它的收敛速度要比随机梯度下降更快,这样也能够使准确率有所提高。如下程序所示,我们使用学习率为0.001的AdamOptimizer作为优化算法(其它部分不变):

程序9:

#Adam优化算法

train_step = tf.train.AdamOptimizer(1e-2).minimize(loss)

此外,如果你了解了过拟合的概念,那么很容易可以联想到测试集准确率不高的原因,可能是因为训练过程中发生了“过拟合”的现象。所以我们可以从防止过拟合的角度出发,提高模型的准确率。我们可以采用增加数据量或是增加正则化项的方式,来缓解过拟合。这里,我们为大家介绍dropout的方式是如何缓解过拟合的。

Dropout是在每次神经网络的训练过程中,使得部分神经元工作而另外一部分神经元不工作。而测试的时候激活所有神经元,用所有的神经元进行测试。这样便可以有效的缓解过拟合,提高模型的准确率。具体代码如下所示:

程序10:

def neural_network(x):

hidden_layer_1 = tf.add(tf.matmul(x, weights['hidden_1']), biases['b1'])

L1 = tf.nn.tanh(hidden_layer_1)

dropout1 = tf.nn.dropout(L1,0.5)

out_layer = tf.matmul(dropout1, weights['out']) + biases['out']

return out_layer

如程序10所示,我们在隐藏层后接了dropout,随机关掉50%的神经元,最后的测试结果如下图所示,我们发现准确率取得了显著的提高,在神经网络结构中没有添加卷积层和池化层的情况下,准确率达到了92%以上。


原文发布于微信公众号 - 磐创AI(xunixs)

原文发表时间:2018-05-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术小站

吴恩达深度学习笔记 course4 week 4 特殊应用:人脸识别与神经风格转换

output:如果图片是对应的K人中的一人,则输出此人ID,否则验证不通过    ,人脸识别比人脸验证更难一些,如果一个人脸验证系统的正确率为99%,即错误率为...

802
来自专栏深度学习自然语言处理

基于汉语短文本对话的立场检测系统理论与实践

汉语短文本对话立场检测的主要任务就是通过以对话的一个人的立场为主要立场,而判断另一个人针对该人的回话的立场。立场包括支持,反对,中立三种立场。基于对话的立场检测...

891
来自专栏杂文共赏

卷积神经网络究竟做了什么?

神经学习的一种主要方式就是卷积神经网络(CNN),有许多种方法去描述CNN到底做了什么,一般通过图像分类例子通过数学的或直观的方法来介绍如何训练和使用CNN。

4908
来自专栏人工智能LeadAI

实现与优化深度神经网络

全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程(http://www.tensorfly.cn/tfdoc/tutorials/m...

34411
来自专栏AI研习社

用GAN来做图像生成,这是最好的方法

前言 对于图像问题,卷积神经网络相比于简单地全连接的神经网络更具优势。 本文将继续深入 GAN,通过融合卷积神经网络来对我们的 GAN 进行改进,实现一个深...

3104
来自专栏AI科技评论

开发 | 用GAN来做图像生成,这是最好的方法

前言 在我们之前的文章中,我们学习了如何构造一个简单的 GAN 来生成 MNIST 手写图片。对于图像问题,卷积神经网络相比于简单地全连接的神经网络更具优势,因...

3465
来自专栏ATYUN订阅号

Python中的白噪声时间训练

白噪声是时间序列预测中的一个重要概念。如果一个时间序列是白噪声,它是一个随机数序列,不能预测。如果预测误差不是白噪声,它暗示了预测模型仍有改进空间。 在本教程中...

5196
来自专栏机器之心

教程 | 从头开始在Python中开发深度学习字幕生成模型

3314
来自专栏州的先生

使用机器学习模型快速进行图像分类识别

1093
来自专栏奇点大数据

Pytorch神器(5)

大家好,今天我们进一步学习Pytorch的用法之正向传播(FeedForward)网络的用法。

802

扫码关注云+社区