损失函数综述

作者 | AI小昕

编辑 | 磐石

出品 | 磐创AI技术团队

【磐创AI导读】:本文主要介绍了几种常见的损失函数。欢迎大家点击上方蓝字关注我们的公众号:磐创AI。点击公众号下方文章精选系列文章了解更多。

损失函数(loss function)又叫做代价函数(cost function),是用来评估模型的预测值与真实值不一致的程度,也是神经网络中优化的目标函数,神经网络训练或者优化的过程就是最小化损失函数的过程,损失函数越小,说明模型的预测值就越接近真是值,模型的健壮性也就越好。

常见的损失函数有以下几种:

(1) 0-1损失函数(0-1 lossfunction):

0-1损失函数是最为简单的一种损失函数,多适用于分类问题中,如果预测值与目标值不相等,说明预测错误,输出值为1;如果预测值与目标值相同,说明预测正确,输出为0,言外之意没有损失。其数学公式可表示为:

由于0-1损失函数过于理想化、严格化,且数学性质不是很好,难以优化,所以在实际问题中,我们经常会用以下的损失函数进行代替。

(2)感知损失函数(Perceptron Loss): 感知损失函数是对0-1损失函数的改进,它并不会像0-1损失函数那样严格,哪怕预测值为0.99,真实值为1,都会认为是错误的;而是给一个误差区间,只要在误差区间内,就认为是正确的。其数学公式可表示为:

(3)平方损失函数(quadratic loss function):

顾名思义,平方损失函数是指预测值与真实值差值的平方。损失越大,说明预测值与真实值的差值越大。平方损失函数多用于线性回归任务中,其数学公式为:

接下来,我们延伸到样本个数为N的情况,此时的平方损失函数为:

(4)Hinge损失函数(hinge loss function):

Hinge损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。其数学公式为:

其中在上式中,t是目标值{-1,+1},y为预测值的输出,取值范围在(-1,1)之间。

(5)对数损失函数(Log Loss):

对数损失函数也是常见的一种损失函数,常用于逻辑回归问题中,其标准形式为:

上式中,y为已知分类的类别,x为样本值,我们需要让概率p(y|x)达到最大值,也就是说我们要求一个参数值,使得输出的目前这组数据的概率值最大。因为概率P(Y|X)的取值范围为[0,1],log(x)函数在区间[0,1]的取值为负数,所以为了保证损失值为正数要在log函数前加负号。

(6)交叉熵损失函数(cross-entropy loss function):

交叉熵损失函数本质上也是一种对数损失函数,常用于多分类问题中。其数学公式为:

注意:公式中的x表示样本,a代表预测的输出,y为实际输出,n表示样本总数量。交叉熵损失函数常用于当sigmoid函数作为激活函数的情景,因为它可以完美解决平方损失函数权重更新过慢的问题。

以上为大家介绍了较为常见的一些损失函数以及使用场景。接下来的文章中会结合经典的实例——MNIST手写数字识别,为大家讲解如何在深度学习实际的项目中运用激活函数、损失函数到。


原文发布于微信公众号 - 磐创AI(xunixs)

原文发表时间:2018-05-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏专知

概率论之概念解析:极大似然估计

【导读】本文是数据科学家Jonny Brooks-Bartlett概率论基础概念系列博客中的“极大似然估计”一章,主要讲解了极大似然估计的若干概念。分别介绍了参...

3097
来自专栏大数据挖掘DT机器学习

手把手教你实现SVM算法

什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断...

33510
来自专栏智能算法

以色列理工暑期学习-机器学习中Loss函数的小结

机器学习作为一种优化方法,最重要的一点是找到优化的目标函数——损失函数和正则项的组合;有了目标函数的“正确的打开方式”,才能通过合适的机器学习算法求解优化。 通...

37511
来自专栏专知

【干货】计算机视觉实战系列04——用Python做图像处理

【导读】专知成员Hui上一次为大家介绍Numpy包的使用,介绍了Numpy库的一些基本函数和一些简单用法,以及图像灰度变换,这一次为大家详细讲解图像的缩放、图像...

4847
来自专栏机器学习与自然语言处理

深度学习在文本分类中的应用

近期阅读了一些深度学习在文本分类中的应用相关论文(论文笔记),同时也参加了CCF 大数据与计算智能大赛(BDCI)2017的一个文本分类问题的比赛:让AI当法...

5036
来自专栏数据科学与人工智能

【算法】决策树与ID3算法

小编邀请您,先思考: 1 如何构建决策树? 2 决策树适合解决什么问题? 1. 什么是决策树/判定树(decision tree)? 决策树(Decision ...

3545
来自专栏WD学习记录

机器学习 学习笔记(20)深度前馈网络

深度前馈网络(deep feedforward network),也叫做前馈神经网络(feedforward neural network)或者多层感知机(mu...

2323
来自专栏CDA数据分析师

三分钟看懂机器学习中应该注意哪些问题?

本文简单谈谈机器学习中应该注意的一些问题。仅供大家参考学习和讨论。 1. 特征预处理 机器学习中的输入数据必须是数值类型的,但是现实问题中不免会有一些类别类型的...

18410
来自专栏ATYUN订阅号

从自编码器到变分自编码器(其一)

AiTechYun 编辑:yuxiangyu 自编码器是一种无监督学习技术,利用神经网络进行表征学习。也就是说,我们设计一个在网络中施加“瓶颈”,迫使原始输入压...

4315
来自专栏IT派

笔记 | 吴恩达Coursera Deep Learning学习笔记

作者:Lisa Song 微软总部云智能高级数据科学家,现居西雅图。具有多年机器学习和深度学习的应用经验,熟悉各种业务场景下机器学习和人工智能产品的需求分析...

3688

扫码关注云+社区