前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >深度学习之 TensorFlow(五):mnist 的 Alexnet 实现

深度学习之 TensorFlow(五):mnist 的 Alexnet 实现

作者头像
希希里之海
发布2018-07-05 17:21:44
1.5K0
发布2018-07-05 17:21:44
举报

尝试用 Alexnet 来构建一个网络模型,并使用 mnist 数据查看训练结果。

我们将代码实现分为三个过程,加载数据、定义网络模型、训练数据和评估模型。

实现代码如下:

#-*- coding:utf-8 -*_


#加载数据


import tensorflow as tf

# 输入数据
from tensorflow.examples.tutorials.mnist import input_data
#TensorFlow 自带,用来下载并返回 mnist 数据。可以自己下载 mnist数据后,存放到指定目录,我这里是 /tmp/data 目录。
#其实如果没有下载数据,TensorFlow 也会帮你自动下载 mnist 数据存放到你指定的目录当中。
#mnist 数据下载地址:http://yann.lecun.com/exdb/mnist/
mnist = input_data.read_data_sets("/tmp/data", one_hot=True)

# 定义网络的超参数
learning_rate = 0.001
training_iters = 200000
batch_size = 128
display_step = 5

# 定义网络的参数
n_input = 784 # 输入的维度 (img shape: 28*28)
n_classes = 10 # 标记的维度 (0-9 digits)
dropout = 0.75 # Dropout的概率,输出的可能性

# 输入占位符
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)


#构建网络模型


# 定义卷积操作
def conv2d(name,x, W, b, strides=1):
    # Conv2D wrapper, with bias and relu activation
    x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
    x = tf.nn.bias_add(x, b)
    return tf.nn.relu(x,name=name)  # 使用relu激活函数

# 定义池化层操作
def maxpool2d(name,x, k=2):
    # MaxPool2D wrapper
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                          padding='SAME',name=name)     #最大值池化

# 规范化操作
def norm(name, l_input, lsize=4):
    return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0,
                     beta=0.75, name=name)

# 定义所有的网络参数
weights = {
    'wc1': tf.Variable(tf.random_normal([11, 11, 1, 96])),
    'wc2': tf.Variable(tf.random_normal([5, 5, 96, 256])),
    'wc3': tf.Variable(tf.random_normal([3, 3, 256, 384])),
    'wc4': tf.Variable(tf.random_normal([3, 3, 384, 384])),
    'wc5': tf.Variable(tf.random_normal([3, 3, 384, 256])),
    'wd1': tf.Variable(tf.random_normal([4*4*256, 4096])),
    'wd2': tf.Variable(tf.random_normal([4096, 1024])),
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([96])),
    'bc2': tf.Variable(tf.random_normal([256])),
    'bc3': tf.Variable(tf.random_normal([384])),
    'bc4': tf.Variable(tf.random_normal([384])),
    'bc5': tf.Variable(tf.random_normal([256])),
    'bd1': tf.Variable(tf.random_normal([4096])),
    'bd2': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}


#定义 Alexnet 网络模型


# 定义整个网络
def alex_net(x, weights, biases, dropout):
    # 向量转为矩阵 Reshape input picture
    x = tf.reshape(x, shape=[-1, 28, 28, 1])

    # 第一层卷积
    # 卷积
    conv1 = conv2d('conv1', x, weights['wc1'], biases['bc1'])
    # 下采样
    pool1 = maxpool2d('pool1', conv1, k=2)
    # 规范化
    norm1 = norm('norm1', pool1, lsize=4)

    # 第二层卷积
    # 卷积
    conv2 = conv2d('conv2', norm1, weights['wc2'], biases['bc2'])
    # 最大池化(向下采样)
    pool2 = maxpool2d('pool2', conv2, k=2)
    # 规范化
    norm2 = norm('norm2', pool2, lsize=4)

    # 第三层卷积
    # 卷积
    conv3 = conv2d('conv3', norm2, weights['wc3'], biases['bc3'])
    # 规范化
    norm3 = norm('norm3', conv3, lsize=4)

    # 第四层卷积
    conv4 = conv2d('conv4', norm3, weights['wc4'], biases['bc4'])

    # 第五层卷积
    conv5 = conv2d('conv5', conv4, weights['wc5'], biases['bc5'])
    # 最大池化(向下采样)
    pool5 = maxpool2d('pool5', conv5, k=2)
    # 规范化
    norm5 = norm('norm5', pool5, lsize=4)


    # 全连接层1
    fc1 = tf.reshape(norm5, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 =tf.add(tf.matmul(fc1, weights['wd1']),biases['bd1'])
    fc1 = tf.nn.relu(fc1)
    # dropout
    fc1=tf.nn.dropout(fc1,dropout)

    # 全连接层2
    fc2 = tf.reshape(fc1, [-1, weights['wd2'].get_shape().as_list()[0]])
    fc2 =tf.add(tf.matmul(fc2, weights['wd2']),biases['bd2'])
    fc2 = tf.nn.relu(fc2)
    # dropout
    fc2=tf.nn.dropout(fc2,dropout)

    # 输出层
    out = tf.add(tf.matmul(fc2, weights['out']) ,biases['out'])
    return out

#构建模型,定义损失函数和优化器,并构建评估函数

# 构建模型
pred = alex_net(x, weights, biases, keep_prob)

# 定义损失函数和优化器
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) 
#这里定义损失函数时调用tf.nn.softmax_cross_entropy_with_logits() 函数必须使用参数命名的方式来调用 (logits=pred, labels=y)不然会报错。
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# 评估函数
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))


#训练模型和评估模型


# 初始化变量
init = tf.global_variables_initializer()

# 开启一个训练
with tf.Session() as sess:
    sess.run(init)
    step = 1
    # 开始训练,直到达到training_iters,即200000
    while step * batch_size < training_iters:
        #获取批量数据
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout})
        if step % display_step == 0:
            # 计算损失值和准确度,输出
            loss,acc = sess.run([cost,accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.})
            print ("Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
        step += 1
    print ("Optimization Finished!")
    # 计算测试集的精确度
    print ("Testing Accuracy:",
           sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                         y: mnist.test.labels[:256],
                                         keep_prob: 1.}))

GitHub 代码:https://github.com/weixuqin/tensorflow/blob/master/AlexNet.py

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2018-05-10 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档