谷歌通过定制的深度学习模型升级了其语音转文字的服务

一个月前,谷歌宣布在源于Magenta项目的文字转语音(Text-to-Speech,简称TTS)技术上取得代际突破,接着该公司又对其语音转文字(Speech-to-Text,简称STT)API云服务进行了重大升级。更新后的服务利用语音转录的深度学习模型,根据特定用例量身定制:短语音命令、打电话或视频,在所有其他上下文中都有一个默认模型。如今,升级后的服务可以处理120种语言以及不同模型可用性和功能级别的变体。商业应用范围包括电话会议、呼叫中心和视频转录。转录的准确性在有多个扬声器和明显背景噪音的情形下有了改进提高。

另外两个因素构成了本次升级。标准服务水平协议(the standard service level agreement,简称SLA)现在承诺有99.9%的可用性。该服务含有一种新机制来标记转录工作并向谷歌团队提供反馈。

专用模型是根据音频媒体的特点来采样,从而产生带宽和信号持续时间。电话音频的采样频率是8Khz,因此音频质量较低,而来自视频的音频,采样频率通常是16Khz。因此,需要针对每种媒体类型进行优化的模型。

众包真实世界音频样本是谷歌改进其模型战略的核心,随着所谓数据记录的可选程序的发布,用户可以选择跟谷歌共享他们的音频,以帮助改进模型。数据记录的启用让用户可以访问具有更好性能的增强模型。谷歌宣布, 与标准电话模型相比,词汇错误减少了54%,而对于增强视频模型,错误减少了64%。

就最佳实践而言,谷歌建议使用无损耗编码器(如FLAC)压缩后的音频数据,采样频率为16Khz,避免任何音频预处理,比如降噪或自动增益控制。

词汇错误减少不是提升语音转文字整体质量的唯一因素。标点符号的预测仍然是语言转录面临的重要挑战。谷歌的语音转文字API现在能够给转录后的文本添加标点符号,进一步提高了转自长音频序列的文本的可读性。这种自动添加标点符号的功能是利用了LSTM神经网络模型。

正如最近来自谷歌研究(Google Research)关于语音合成和语音识别的研究成果显示,用于语音转文字的深度学习经常是基于序列到序列(sequence-to-sequence,也可简写为Seq2seq)的神经网络模型,这些模型也可以应用于机器翻译和文本摘要。简而言之,Seq2seq模型使用第一个LSTM对音频输入进行编码,第二个LSTM以输入序列为条件,对数据进行解码,并把数据转换成转录文本。

其他现有的语音转文字服务包括支持29种语言的微软语音识别API、支持7种语言的IBM Watson API,以及2017年11月发布的亚马逊Transcribe,到目前为止,其只支持美式英语和西班牙语。来自佛罗里达技术学院(the Florida Institute of Technology)对其中这些服务的比较显示,谷歌服务API的错误率较低。另一组比较测试强调了语音转录服务延迟的重要性。

原文发布于微信公众号 - 程序你好(codinghello)

原文发表时间:2018-05-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【陆勤践行】机器学习最佳入门学习资料汇总

这篇文章的确很难写,因为我希望它真正地对初学者有帮助。面前放着一张空白的纸,我坐下来问自己一个难题:面对一个对机器学习领域完全陌生的初学者,我该推荐哪些最适合的...

2306
来自专栏机器之心

前沿 | IBM全新AI芯片设计登上Nature:算力是GPU的100倍

用 GPU 运行神经网络的方法近年来已经为人工智能领域带来了惊人的发展,然而两者的组合其实并不完美。IBM 研究人员希望专门为神经网络设计一种新芯片,使前者运行...

1390
来自专栏AI科技评论

不一样的论文解读:2018 KDD best paper「Embeddings at Airbnb」

Airbnb 的 Real-time Personalization using Embeddings for Search Ranking at Airbnb...

1712
来自专栏宏伦工作室

开源 | 深度有趣 - 人工智能实战项目合集

理论部分 已经有很多神级大佬的工作,例如吴恩达老师的深度学习微专业课,所以不在这块花重复力气。

2352
来自专栏磐创AI技术团队的专栏

热点 | 四月最佳Github项目库与最有趣Reddit热点讨论(文末免费送百G数据集)

1272
来自专栏大数据文摘

利用Python进行深度学习的完整入门指南(附资源)

2067
来自专栏机器学习算法与Python学习

看论文头疼吗?这里有一份学术论文阅读指南请查收!

对于从事学术研究的人来说,跟进最新的论文是必备的科研素质之一。但面对海量的论文更新,应该如何快速又有效地阅读论文,吸收其精华? KyleM Shannon 为我...

2150
来自专栏量子位

Google大脑工程师详解:深度学习技术能带来哪些新产品?

量子位 | 李林 整理编译 提到深度学习,你可能会想到认猫、认脸,或者下围棋、翻译……其实,这项技术还能用在很多你意想不到的地方。 那么,“深度学习的最新进展能...

3397
来自专栏CVer

机器学习&深度学习网站资源汇总

今天推荐一个超NB的开源项目mlhub123,我自以为自己收集的"黑科技"已经够多够全了,但直接看到mlhub123,哈哈,自惭形秽。

2541
来自专栏数据科学与人工智能

机器学习最佳入门学习资料汇总

专为机器学习初学者推荐的优质学习资源,帮助初学者快速入门。 这篇文章的确很难写,因为我希望它真正地对初学者有帮助。面前放着一张空白的纸,我坐下来问自己一个难题:...

2385

扫码关注云+社区

领取腾讯云代金券