高并发面试必问:分布式消息系统Kafka简介

Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,之后成为Apache项目的一部分。Kafka是一个分布式的,可划分的,冗余备份的持久性的日志服务。它主要用于处理活跃的流式数据。

在大数据系统中,常常会碰到一个问题,整个大数据是由各个子系统组成,数据需要在各个子系统中高性能,低延迟的不停流转。传统的企业消息系统并不是非常适合大规模的数据处理。为了已在同时搞定在线应用(消息)和离线应用(数据文件,日志)Kafka就出现了。Kafka可以起到两个作用:

  1. 1.降低系统组网复杂度。
  2. 2.降低编程复杂度,各个子系统不在是相互协商接口,各个子系统类似插口插在插座上,Kafka承担高速数据总线的作用。

Kafka主要特点:

  1. 1.同时为发布和订阅提供高吞吐量。据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB)。
  2. 2.可进行持久化操作。将消息持久化到磁盘,因此可用于批量消费,例如ETL,以及实时应用程序。通过将数据持久化到硬盘以及replication防止数据丢失。
  3. 3.分布式系统,易于向外扩展。所有的producer、broker和consumer都会有多个,均为分布式的。无需停机即可扩展机器。
  4. 4.消息被处理的状态是在consumer端维护,而不是由server端维护。当失败时能自动平衡。
  5. 5.支持online和offline的场景。

Kafka的架构:

Kafka的整体架构非常简单,是显式分布式架构,producer、broker(kafka)和consumer都可以有多个。Producer,consumer实现Kafka注册的接口,数据从producer发送到broker,broker承担一个中间缓存和分发的作用。broker分发注册到系统中的consumer。broker的作用类似于缓存,即活跃的数据和离线处理系统之间的缓存。客户端和服务器端的通信,是基于简单,高性能,且与编程语言无关的TCP协议。几个基本概念:

  1. 1.Topic:特指Kafka处理的消息源(feeds of messages)的不同分类。
  2. 2.Partition:Topic物理上的分组,一个topic可以分为多个partition,每个partition是一个有序的队列。partition中的每条消息都会被分配一个有序的id(offset)。 3.Message:消息,是通信的基本单位,每个producer可以向一个topic(主题)发布一些消息。
  3. 4.Producers:消息和数据生产者,向Kafka的一个topic发布消息的过程叫做producers。
  4. 5.Consumers:消息和数据消费者,订阅topics并处理其发布的消息的过程叫做consumers。
  5. 6.Broker:缓存代理,Kafka集群中的一台或多台服务器统称为broker。

消息发送的流程:

  1. 1.Producer根据指定的partition方法(round-robin、hash等),将消息发布到指定topic的partition里面
  2. 2.kafka集群接收到Producer发过来的消息后,将其持久化到硬盘,并保留消息指定时长(可配置),而不关注消息是否被消费。
  3. 3.Consumer从kafka集群pull数据,并控制获取消息的offset

Kayka的设计:

1、吞吐量

高吞吐是kafka需要实现的核心目标之一,为此kafka做了以下一些设计:

  1. 1.数据磁盘持久化:消息不在内存中cache,直接写入到磁盘,充分利用磁盘的顺序读写性能
  2. 2.zero-copy:减少IO操作步骤
  3. 3.数据批量发送
  4. 4.数据压缩
  5. 5.Topic划分为多个partition,提高parallelism

2、负载均衡

  1. 1.producer根据用户指定的算法,将消息发送到指定的partition
  2. 2.存在多个partiiton,每个partition有自己的replica,每个replica分布在不同的Broker节点上
  3. 3.多个partition需要选取出lead partition,lead partition负责读写,并由zookeeper负责fail over
  4. 4.通过zookeeper管理broker与consumer的动态加入与离开

3、拉取系统

由于kafka broker会持久化数据,broker没有内存压力,因此,consumer非常适合采取pull的方式消费数据,具有以下几点好处:

  1. 1.简化kafka设计
  2. 2.consumer根据消费能力自主控制消息拉取速度
  3. 3.consumer根据自身情况自主选择消费模式,例如批量,重复消费,从尾端开始消费等

4、可扩展性

当需要增加broker结点时,新增的broker会向zookeeper注册,而producer及consumer会根据注册在zookeeper上的watcher感知这些变化,并及时作出调整。

Kafka的应用场景:

1、消息队列

比起大多数的消息系统来说,Kafka有更好的吞吐量,内置的分区,冗余及容错性,这让Kafka成为了一个很好的大规模消息处理应用的解决方案。消息系统一般吞吐量相对较低,但是需要更小的端到端延时,并尝尝依赖于Kafka提供的强大的持久性保障。在这个领域,Kafka足以媲美传统消息系统,如ActiveMR或RabbitMQ。

2、行为跟踪

Kafka的另一个应用场景是跟踪用户浏览页面、搜索及其他行为,以发布-订阅的模式实时记录到对应的topic里。那么这些结果被订阅者拿到后,就可以做进一步的实时处理,或实时监控,或放到hadoop/离线数据仓库里处理。

3、元信息监控

作为操作记录的监控模块来使用,即汇集记录一些操作信息,可以理解为运维性质的数据监控吧。

4、日志收集

日志收集方面,其实开源产品有很多,包括Scribe、Apache Flume。很多人使用Kafka代替日志聚合(log aggregation)。日志聚合一般来说是从服务器上收集日志文件,然后放到一个集中的位置(文件服务器或HDFS)进行处理。然而Kafka忽略掉文件的细节,将其更清晰地抽象成一个个日志或事件的消息流。这就让Kafka处理过程延迟更低,更容易支持多数据源和分布式数据处理。比起以日志为中心的系统比如Scribe或者Flume来说,Kafka提供同样高效的性能和因为复制导致的更高的耐用性保证,以及更低的端到端延迟。

5、流处理

这个场景可能比较多,也很好理解。保存收集流数据,以提供之后对接的Storm或其他流式计算框架进行处理。很多用户会将那些从原始topic来的数据进行阶段性处理,汇总,扩充或者以其他的方式转换到新的topic下再继续后面的处理。例如一个文章推荐的处理流程,可能是先从RSS数据源中抓取文章的内容,然后将其丢入一个叫做“文章”的topic中;后续操作可能是需要对这个内容进行清理,比如回复正常数据或者删除重复数据,最后再将内容匹配的结果返还给用户。这就在一个独立的topic之外,产生了一系列的实时数据处理的流程。Strom和Samza是非常著名的实现这种类型数据转换的框架。

6、事件源

事件源是一种应用程序设计的方式,该方式的状态转移被记录为按时间顺序排序的记录序列。Kafka可以存储大量的日志数据,这使得它成为一个对这种方式的应用来说绝佳的后台。比如动态汇总(News feed)。

7、持久性日志(commit log)

Kafka可以为一种外部的持久性日志的分布式系统提供服务。这种日志可以在节点间备份数据,并为故障节点数据回复提供一种重新同步的机制。Kafka中日志压缩功能为这种用法提供了条件。在这种用法中,Kafka类似于Apache BookKeeper项目。

Kafka的设计要点:

1、直接使用linux 文件系统的cache,来高效缓存数据。

2、采用linux Zero-Copy提高发送性能。传统的数据发送需要发送4次上下文切换,采用sendfile系统调用之后,数据直接在内核态交换,系统上下文切换减少为2次。根据测试结果,可以提高60%的数据发送性能。Zero-Copy详细的技术细节可以参考:https://www.ibm.com/developerworks/linux/library/j-zerocopy/

3、数据在磁盘上存取代价为O(1)。kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。每个segment中存储多条消息(见下图),消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。

4、显式分布式,即所有的producer、broker和consumer都会有多个,均为分布式的。Producer和broker之间没有负载均衡机制。broker和consumer之间利用zookeeper进行负载均衡。所有broker和consumer都会在zookeeper中进行注册,且zookeeper会保存他们的一些元数据信息。如果某个broker和consumer发生了变化,所有其他的broker和consumer都会得到通知。

原文发布于微信公众号 - JAVA高级架构(gaojijiagou)

原文发表时间:2018-05-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏喔家ArchiSelf

老曹眼中的缓存技术

缓存是系统快速响应中的一种关键技术,是一组被保存起来以备将来使用的东西,介于应用开发和系统开发之间,是产品经理们经常顾及不到的地方,算是技术架构中的非功能性约束...

1442
来自专栏Java架构

深入理解高并发下分布式事务的解决方案

分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分别位于不同的分布式系统的不同节点之上。以上是百度百科的解释,简单的说,就是一次大的操作...

1102
来自专栏nummy

分布式消息系统:Kafka

Kafka是分布式发布-订阅消息系统。它最初由LinkedIn公司开发,之后成为Apache项目的一部分。Kafka是一个分布式的,可划分的,冗余备份的持久性的...

1193
来自专栏向治洪

android个推平台

最近有个朋友想要推送一些消息到自己的APP上,自己用了HTTP轮询的方式比较耗电,也比较占用流量,一旦用户关闭了进程,消息则很难触达,于是,咨询我有没有什么好的...

2146
来自专栏Python攻城狮

GitHub 系列之「团队合作利器 Branch」1.什么是分支?2.分支的常用操作3.基本的团队协作流程4.Git Flow

Git 相比于 SVN 最强大的一个地方就在于「分支」,Git 的分支操作简直不要太方便,而实际项目开发中团队合作最依赖的莫过于分支了,关于分支前面的系列也提到...

821
来自专栏翻译社

6个虚拟机备份和恢复的最佳实践

虚拟机的体系结构与传统的本地环境大不相同,需要不同的数据备份技术。本文将介绍一些备份虚拟机的最佳实践。

3216
来自专栏程序员互动联盟

【答疑解惑第九讲】如何在linux下面编译一个简单的c语言程序

存在问题: 习惯了用IDE,习惯了点击执行按钮。在linux就不能这样了,该咋办? 解决方案: 随着android的大热,在linux下搞开发的人也越来越多,好...

38011
来自专栏java思维导图

从一笔金币充值去思考分布式事务

考虑支付重构的时候,自然想到原本属于一个本地事务中的处理,现在要跨应用了要怎么处理。拿充值订单举个栗子吧,假设:原本订单模块和账户模块是放在一起的,现在需要做服...

914
来自专栏Rainbond开源「容器云平台」

好雨云帮近期问答集锦(1.16 - 2.5)

1213
来自专栏Laoqi's Linux运维专列

Ansible 多机房自动部署发布

2013

扫码关注云+社区

领取腾讯云代金券