全球最全计算机视觉资料(2:分类与检测)

目标检测和深度学习

Image Classification

  1. Microsoft Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition [http://arxiv.org/pdf/1512.03385v1.pdf] [http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf]
  2. Microsoft Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, [http://arxiv.org/pdf/1502.01852]
  3. Batch Normalization Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift [http://arxiv.org/pdf/1502.03167]
  4. GoogLeNet Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich,CVPR, 2015. [http://arxiv.org/pdf/1409.4842]
  5. VGG-Net Karen Simonyan and Andrew Zisserman, Very Deep Convolutional Networks for Large-Scale Visual Recognition, ICLR, 2015. [http://www.robots.ox.ac.uk/~vgg/research/very_deep/] [http://arxiv.org/pdf/1409.1556]
  6. AlexNet Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS, 2012. [http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012]

Object Detection

  1. Deep Neural Networks for Object Detection (基于DNN的对象检测)NIPS2013:
    • [https://cis.temple.edu/~yuhong/teach/2014_spring/papers/NIPS2013_DNN_OD.pdf]
  2. R-CNN Rich feature hierarchies for accurate object detection and semantic segmentation:
    • [https://arxiv.org/abs/1311.2524]
  3. Fast R-CNN :
    • [http://arxiv.org/abs/1504.08083]
  4. Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks:
    • [http://arxiv.org/abs/1506.01497]
  5. Scalable Object Detection using Deep Neural Networks
    • [http://arxiv.org/abs/1312.2249]
  6. Scalable, High-Quality Object Detection
    • [http://arxiv.org/abs/1412.1441]
  7. SPP-Net Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    • [http://arxiv.org/abs/1406.4729]
  8. DeepID-Net DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
    • [https://arxiv.org/abs/1412.5661]
  9. Object Detectors Emerge in Deep Scene CNNs
    • [http://arxiv.org/abs/1412.6856]
  10. segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection
    • [https://arxiv.org/abs/1502.04275]
  11. Object Detection Networks on Convolutional Feature Maps
    • [http://arxiv.org/abs/1504.06066]
  12. Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
    • [http://arxiv.org/abs/1504.03293]
  13. DeepBox: Learning Objectness with Convolutional Networks
    • [http://arxiv.org/abs/1504.03293]
  14. Object detection via a multi-region & semantic segmentation-aware CNN model
    • [http://arxiv.org/abs/1505.01749]
  15. You Only Look Once: Unified, Real-Time Object Detection
    • [http://arxiv.org/abs/1506.02640]
  16. YOLOv2 YOLO9000: Better, Faster, Stronger
    • [https://arxiv.org/abs/1612.08242]
  17. AttentionNet: Aggregating Weak Directions for Accurate Object Detection
    • [http://arxiv.org/abs/1506.07704]
  18. DenseBox: Unifying Landmark Localization with End to End Object Detection
    • [http://arxiv.org/abs/1509.04874]
  19. SSD: Single Shot MultiBox Detector
    • [http://arxiv.org/abs/1512.02325]
  20. DSSD : Deconvolutional Single Shot Detector
    • [https://arxiv.org/abs/1701.06659]
  21. G-CNN: an Iterative Grid Based Object Detector
    • [http://arxiv.org/abs/1512.07729]
  22. HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection
    • [http://arxiv.org/abs/1604.00600]
  23. A MultiPath Network for Object Detection
    • [http://arxiv.org/abs/1604.02135]
  24. R-FCN: Object Detection via Region-based Fully Convolutional Networks
    • [http://arxiv.org/abs/1605.06409]
  25. A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection
    • [http://arxiv.org/abs/1607.07155]
  26. PVANET: Deep but Lightweight Neural Networks for Real-time Object Detection
    • [http://arxiv.org/abs/1608.08021]
  27. Feature Pyramid Networks for Object Detection
    • [https://arxiv.org/abs/1612.03144]
  28. Learning Chained Deep Features and Classifiers for Cascade in Object Detection
    • [https://arxiv.org/abs/1702.07054]
  29. DSOD: Learning Deeply Supervised Object Detectors from Scratch
    • [https://arxiv.org/abs/1708.01241]
  30. Focal Loss for Dense Object Detection ICCV 2017 Best student paper award. Facebook AI Research
    • [https://arxiv.org/abs/1708.02002]
  31. Mask-RCNN 2017 ICCV 2017 Best paper award. Facebook AI Research - [https://arxiv.org/pdf/1703.06870.pdf]

转发帮助更多的人

原文发布于微信公众号 - 目标检测和深度学习(The_leader_of_DL_CV)

原文发表时间:2018-05-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏程序生活

机器学习(八)最小二乘法1 线性代数

文章将从线性代数和概率论统计两个角度去分析和解释最小二乘法 1 线性代数 1.1 空间解析几何的相关定义 向量:在空间几何中,称既有大小又有方向的量为向量,也叫...

3524
来自专栏李智的专栏

Deep learning基于theano的keras学习笔记(3)-网络层

1.3 Dropout层 为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时随机断开一定百分比(p)的输入神经元连接,Dropout层...

1682
来自专栏机器学习算法原理与实践

word2vec原理(一) CBOW与Skip-Gram模型基础

    word2vec是google在2013年推出的一个NLP工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的...

1862
来自专栏大数据挖掘DT机器学习

反向传播神经网络极简入门

我一直在找一份简明的神经网络入门,然而在中文圈里并没有找到。直到我看到了这份162行的Python实现,以及对应的油管视频之后,我才觉得这就是我需要的极简入门资...

41415
来自专栏智能算法

分类回归树算法---CART

一、算法介绍 分类回归树算法:CART(Classification And Regression Tree)算法也属于一种决策树,和之前介绍了C4.5算法相...

7638
来自专栏智能算法

分类回归树算法---CART

一、算法介绍 分类回归树算法:CART(Classification And Regression Tree)算法也属于一种决策树,和之前介绍了C4.5算法相...

4679
来自专栏郭耀华‘s Blog

【机器学习数学基础】线性代数基础

1271
来自专栏数据处理

回归

看一下损失函数的导函数tanh(x),当x偏离0时,tanh(x)趋向+1或者-1

1202
来自专栏专知

【专知荟萃19】图像识别Image Recognition知识资料全集(入门/进阶/论文/综述/视频/专家,附查看)

图像识别 Image Recognition 专知荟萃 入门学习 进阶文章 Imagenet result 2013 2014 2015 2016 2017 综...

5675
来自专栏marsggbo

Andrew Ng机器学习课程笔记--week5(上)

Neural Networks: Learning 内容较多,故分成上下两篇文章。 一、内容概要 Cost Function and Backpropagat...

2148

扫码关注云+社区

领取腾讯云代金券