【毕设进行时-工业大数据,数据挖掘】第一天收获

正文之前

课设昨天终于答辩完毕,比较完美。美滋滋!上学前浪了一学期,这学期赶紧把毕设怼了。免得自己后面毕业都毕不了那就GG了。而且我的这个课题,学院不管,导师不管,完全自学啊!!简直心酸!哎,赶紧做完滚到计算机去吧。这种姥姥不疼,奶奶不爱的日子太难受了!

正文

初步设想是用数据驱动的方式吧。至于基于知识工程的话,那就能做就做吧!估计做不了!

借鉴的来源:

类似的需要实现的功能:

数据驱动的基于工业大数据的形式:

基于数据驱动的算法初步:

可以用BP神经网络,也可以用决策树。

支持向量机的流程框图:

【个人看法】 支持向量机的核心与决策树类似。但是还是有不同之处,现在多学习下支持向量机,后面用自己的算法也行。或者给出多个版本的话,可以作为几个方案去解释!

超平面的概念:

我想做的就是决策树的这种:

求援方向,资料搜集:

毕设数据来源:

这也许是我的主要工作??

线性可分:

呵呵,线性可分是模式识别里的概念阿。简单的说就是如果用一个线性函数可以将两类样本完全分开,就称这些样本是“线性可分”的。

英文叫做linearly separable。

这里不方便写公式,你可以直观想象二维空间划一条直线把两类样本隔开,这两类就称为线性可分样本。

如果两类样本象下面这么分布:

o.........x

.

.

x.........o

就找不到一条直线能把o和x分开了,这时候就称为线性不可分。

超平面本质:

支持向量包含着重构分割超平面所需要的全部信息!

正文之后

今天又划水了!不过建了个个人博客,欢迎大家前往! HUSTWOLF 开启WordPress时代的博客

原文发布于微信公众号 - 工科狗和生物喵(gh_3507b116a1f8)

原文发表时间:2018-05-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

干货 | 机器学习没有你想的那么复杂

人脑是最神奇的。你知道我更感兴趣的是什么吗?是我们的学习能力。我们如何能够适应并学习全新的技能,然后应用到日常生活之中呢?

8540
来自专栏AI科技评论

如何玩转谷歌TensorFlow? | 牛人讲堂

AI并不是一门简单的学科,AI算法的开发和调试并没有一个统一的、集成了大量API方便调用的平台和语言,目前的人工智能开发平台仍然处于一种半蛮荒的状态。许多功能需...

35560
来自专栏AI科技评论

面对未知分类的图像,我要如何拯救我的分类器

AI 科技评论按:当训练好的图像分类器遇到了训练数据里不存在的类别的图像时,显然它会给出离谱的预测。那么我们应该如何改进分类器、如何克服这个问题呢?

24440
来自专栏人工智能快报

科学家利用光信息实现神经网络计算

美国加州大学洛杉矶分校的科学家利用光信息实现了神经网络计算,相较传统电子器件,其处理速度接近光速,但准确性有所降低。

10920
来自专栏AI研习社

意想不到的盟友:改善隐私问题可以带来表现更好的机器学习模型

AI 研习社按:Nicolas Papernot 在 2017、2018 连续两年的 ICLR 上都发表了关于差分隐私方法 PATE 的论文。如今大家都意识到了...

16230
来自专栏企鹅号快讯

不正之风!机器学习论文里都有哪四大投机取巧的写作手法?

AI 科技评论按:由于深度神经网络的成功,机器学习的整个领域也愈发热门、愈发茁壮。机器学习的繁荣以及 arXiv 助推下的知识和技巧快速更新当然是好事,不过这也...

27850
来自专栏技术翻译

揭开人工智能、机器学习和深度学习的神秘面纱

深入学习,机器学习,人工智能——所有代表分析的未来的流行词。在这篇文章中,我们将通过一些现实世界的例子来解释什么是机器学习和深度学习。在以后的文章中,我们将探讨...

10000
来自专栏AI科技评论

干货 | 意想不到的盟友:改善隐私问题可以带来表现更好的机器学习模型

AI 科技评论按:Nicolas Papernot 在 2017、2018 连续两年的 ICLR 上都发表了关于差分隐私方法 PATE 的论文。如今大家都意识到...

13230
来自专栏新智元

CVPR 2018:用GAN预测20年后你长什么样

27530
来自专栏达观数据

多模型融合推荐算法在达观数据的运用

多模型融合推荐算法在达观数据的运用 研发背景 互联网时代也是信息爆炸的时代,内容太多,而用户的时间太少,如何选择成了难题。电商平台里的商品、媒体网站里的新闻、小...

53360

扫码关注云+社区

领取腾讯云代金券