Deep Learning Book 中文5.7-6.2节 机器学习基础-深度前馈网络

监督学习算法、无监督学习算法、推动深度学习的挑战;基于梯度的学习:最大似然学习条件分布;不同的输出单元:多分类等。

下载地址 https://github.com/exacity/deeplearningbook-chinese

原文发布于微信公众号 - CreateAMind(createamind)

原文发表时间:2016-12-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

入门 | 如何通过梯度检验帮助实现反向传播

14150
来自专栏机器之心

增加检测类别?这是一份目标检测的基础指南

14750
来自专栏CreateAMind

神经网络(Neural Networks)课程ppt及视频

10920
来自专栏GAN&CV

基础 | batchnorm原理及代码详解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_25737169/article/d...

9610
来自专栏AI研习社

如何找到最优学习率?

经过了大量炼丹的同学都知道,超参数是一个非常玄乎的东西,比如batch size,学习率等,这些东西的设定并没有什么规律和原因,论文中设定的超参数一般都是靠经验...

448100
来自专栏机器学习算法工程师

Scikit-learn之决策树

作者:章华燕 编辑:黄俊嘉 决策树在学习应用中非常有用,接下来给大家分享一下自己有关于决策树的一些想法! 决策树概述 决策树是一个非参数的监督式学习方法,主要用...

31160
来自专栏算法channel

机器学习逻辑回归:算法兑现为python代码

0 回顾 昨天推送了逻辑回归的基本原理:从逻辑回归的目标任务,到二分类模型的构建,再到如何用梯度下降求出二分类模型的权重参数。今天,我们将对这个算法兑现为代码...

36950
来自专栏机器学习算法工程师

Batchnorm原理详解

作者:刘威威 小编:赵一帆 前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。...

98460
来自专栏Petrichor的专栏

深度学习: 网络超参数设定

卷积时在 图像每一维([batch, in_height, in_width, in_channels])的步长,这是一个一维的向量,长度4。

23220
来自专栏决胜机器学习

卷积神经网络(三) ——inception网络、迁移学习

卷积神经网络(三) ——inception网络、迁移学习 (原创内容,转载请注明来源,谢谢) 一、Inception网络 1、简介 前面的文章中,有各种的卷积模...

43580

扫码关注云+社区

领取腾讯云代金券