如何直观地解释 back propagation 算法?

阅读大概需要6分钟

作者胡逸夫 编辑 zenRRan 稍有修改 链接 https://www.zhihu.com/question/27239198?rf=24827633

导读

BackPropagation算法是多层神经网络的训练中举足轻重的算法。 简单的理解,它的确就是复合函数的链式法则,但其在实际运算中的意义比链式法则要大的多。 要回答“如何直观的解释back propagation算法?”这个问题, 需要先直观理解多层神经网络的训练。

导读

机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定一些样本点,用合适的曲线揭示这些样本点随着自变量的变化关系。 深度学习同样也是为了这个目的,只不过此时,样本点不再限定为(x, y)点对,而可以是由向量、矩阵等等组成的广义点对(X,Y)。而此时,(X,Y)之间的关系也变得十分复杂,不太可能用一个简单函数表示。然而,人们发现可以用多层神经网络来表示这样的关系,而多层神经网络的本质就是一个多层复合的函数。借用网上找到的一幅图,来直观描绘一下这种复合关系。

其对应的表达式如下:

上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b。

和直线拟合一样,深度学习的训练也有一个目标函数,这个目标函数定义了什么样的参数才算一组“好参数”,不过在机器学习中,一般是采用成本函数(cost function),然后,训练目标就是通过调整每一个权值Wij来使得cost达到最小。cost函数也可以看成是由所有待求权值Wij为自变量的复合函数,而且基本上是非凸的,即含有许多局部最小值。但实际中发现,采用我们常用的梯度下降法就可以有效的求解最小化cost函数的问题。 梯度下降法需要给定一个初始点,并求出该点的梯度向量,然后以负梯度方向为搜索方向,以一定的步长进行搜索,从而确定下一个迭代点,再计算该新的梯度方向,如此重复直到cost收敛。那么如何计算梯度呢?

假设我们把cost函数表示为

, 那么它的梯度向量就等于

, 其中

表示正交单位向量。为此,我们需求出cost函数H对每一个权值Wij的偏导数。而BP算法正是用来求解这种多层复合函数的所有变量的偏导数的利器

我们以求e=(a+b)*(b+1)的偏导[3]为例。 它的复合关系画出图可以表示如下:

在图中,引入了中间变量c,d。 为了求出a=2, b=1时,e的梯度,我们可以先利用偏导数的定义求出不同层之间相邻节点的偏导关系,如下图所示。

利用链式法则我们知道:

以及

链式法则在上图中的意义是什么呢?其实不难发现,

的值等于从a到e的路径上的偏导值的乘积,而

的值等于从b到e的路径1(b-c-e)上的偏导值的乘积加上路径2(b-d-e)上的偏导值的乘积。也就是说,对于上层节点p和下层节点q,要求得

,需要找到从q节点到p节点的所有路径,并且对每条路径,求得该路径上的所有偏导数之乘积,然后将所有路径的 “乘积” 累加起来才能得到

的值。

大家也许已经注意到,这样做是十分冗余的,因为很多路径被重复访问了。比如上图中,a-c-e和b-c-e就都走了路径c-e。对于权值动则数万的深度模型中的神经网络,这样的冗余所导致的计算量是相当大的。 同样是利用链式法则,BP算法则机智地避开了这种冗余,它对于每一个路径只访问一次就能求顶点对所有下层节点的偏导值。 正如反向传播(BP)算法的名字说的那样,BP算法是反向(自上往下)来寻找路径的。 从最上层的节点e开始,初始值为1,以层为单位进行处理。对于e的下一层的所有子节点,将1乘以e到某个节点路径上的偏导值,并将结果“堆放”在该子节点中。等e所在的层按照这样传播完毕后,第二层的每一个节点都“堆放"些值,然后我们针对每个节点,把它里面所有“堆放”的值求和,就得到了顶点e对该节点的偏导。然后将这些第二层的节点各自作为起始顶点,初始值设为顶点e对它们的偏导值,以"层"为单位重复上述传播过程,即可求出顶点e对每一层节点的偏导数。 以上图为例,节点c接受e发送的1*2并堆放起来,节点d接受e发送的1*3并堆放起来,至此第二层完毕,求出各节点总堆放量并继续向下一层发送。节点c向a发送2*1并对堆放起来,节点c向b发送2*1并堆放起来,节点d向b发送3*1并堆放起来,至此第三层完毕,节点a堆放起来的量为2,节点b堆放起来的量为2*1+3*1=5, 即顶点e对b的偏导数为5. 举个不太恰当的例子,如果把上图中的箭头表示欠钱的关系,即c→e表示e欠c的钱。以a, b为例,直接计算e对它们俩的偏导相当于a, b各自去讨薪。a向c讨薪,c说e欠我钱,你向他要。于是a又跨过c去找e。b先向c讨薪,同样又转向e,b又向d讨薪,再次转向e。可以看到,追款之路,充满艰辛,而且还有重复,即a, b 都从c转向e。 而BP算法就是主动还款。e把所欠之钱还给c,d。c,d收到钱,乐呵地把钱转发给了a,b,皆大欢喜。

原文发布于微信公众号 - 深度学习自然语言处理(zenRRan)

原文发表时间:2018-04-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

基于TensorFlow生成抽象纹理

来源:otoro 编译:weakish 编者按:Google Brain机器学习开发者hardmu使用TensorFlow,基于CPPN网络生成了许多有趣的高分...

5628
来自专栏jeremy的技术点滴

tensorflow学习笔记_02

3154
来自专栏专知

【专知-Java Deeplearning4j深度学习教程04】使用CNN进行文本分类:图文+代码

【导读】主题链路知识是我们专知的核心功能之一,为用户提供AI领域系统性的知识学习服务,一站式学习人工智能的知识,包含人工智能( 机器学习、自然语言处理、计算机视...

3K7
来自专栏机器之心

从零开始PyTorch项目:YOLO v3目标检测实现

选自Medium 作者:Ayoosh Kathuria 机器之心编译 目标检测是深度学习近期发展过程中受益最多的领域。随着技术的进步,人们已经开发出了很多用于目...

1.3K5
来自专栏数据科学学习手札

(数据科学学习手札40)tensorflow实现LSTM时间序列预测

  上一篇中我们较为详细地铺垫了关于RNN及其变种LSTM的一些基本知识,也提到了LSTM在时间序列预测上优越的性能,本篇就将对如何利用tensorflow,在...

5184
来自专栏AI研习社

Must Know! 数据科学家们必须知道的 5 种聚类算法

聚类是一种关于数据点分组的机器学习技术。给出一组数据点,我们可以使用聚类算法将每个数据点分类到特定的组中。理论上,同一组中的数据点应具有相似的属性或特征,而不同...

4128
来自专栏AI研习社

机器学习小窍门:Python 帮你进行特征选择

特征选择,也就是从数据集中找出并选择最有用特征的过程,是机器学习工作流中一个非常重要的步骤。不必要的特征降低了训练速度,降低了模型的可解释性,最重要的是降低了测...

1373
来自专栏潇涧技术专栏

Matlab Image Segmentation

参考文献: 基于迭代(自动阈值)算法的医学图像增强方法 该文献实现了全局和局部的图像分割代码,使用的都是迭代算法,对比下面的结果可以看出,在灰度差异特别大的图像...

811
来自专栏云时之间

深度学习与神经网络:AutoEncoder自编码

2588
来自专栏人工智能LeadAI

译文 | 与TensorFlow的第一次接触第二篇:线性回归

本章中,将会利用TensorFlow实现一个简单的模型:线性回归。通过本示例,我会分析一些代码基础及说明如何在学习过程中调用各种重要组件,比如cost func...

2994

扫码关注云+社区

领取腾讯云代金券