首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >LDA文档主题生成模型入门

LDA文档主题生成模型入门

作者头像
海天一树
发布2018-07-25 14:22:10
2K0
发布2018-07-25 14:22:10
举报
文章被收录于专栏:海天一树海天一树

一、LDA简介

LDA(Latent Dirichlet Allocation)是一种文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。

LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。

二、安装LDA库

pip install lda

安装完成后,可以在python安装目录下的Lib/site-packages目录下看到lda相关的目录。

三、了解数据集

数据集位于lda安装目录的tests文件夹中,包含三个文件:reuters.ldac, reuters.titles, reuters.tokens。 reuters.titles包含了395个文档的标题 reuters.tokens包含了这395个文档中出现的所有单词,总共是4258个 reuters.ldac有395行,第i行代表第i个文档中各个词汇出现的频率。以第0行为例,第0行代表的是第0个文档,从reuters.titles中可查到该文档的标题为“UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20”。 第0行的数据为: 159 0:1 2:1 6:1 9:1 12:5 13:2 20:1 21:4 24:2 29:1 …… 第一个数字159表示第0个文档里总共出现了159个单词(每个单词出现一或多次), 0:1表示第0个单词出现了1次,从reuters.tokens查到第0个单词为church 2:1表示第2个单词出现了1次,从reuters.tokens查到第2个单词为years 6:1表示第6个单词出现了1次,从reuters.tokens查到第6个单词为told 9:1表示第9个单词出现了1次,从reuters.tokens查到第9个单词为year 12:5表示第12个单词出现了5次,从reuters.tokens查到第12个单词为charles …… 这里第1、3、4、5、7、8、10、11……个单词序号和次数没列出来,表示出现的次数为0

注意: 395个文档的原文是没有的。上述三个文档是根据这395个文档处理之后得到的。

四、程序实现

(一)载入数据

(1)查看文档中词出现的频率

import numpy as np
import lda
import lda.datasets
# document-term matrix
X = lda.datasets.load_reuters()
print("type(X): {}".format(type(X)))
print("shape: {}\n".format(X.shape))
print(X[:5, :5])        #前五行的前五列

运行结果:

type(X): <class 'numpy.ndarray'>
shape: (395, 4258)
[[ 1  0  1  0  0]
 [ 7  0  2  0  0]
 [ 0  0  0  1 10]
 [ 6  0  1  0  0]
 [ 0  0  0  2 14]]

观察reuters.ldac中的前5行的前5列,发现: 第0行的前5列,单词编号为0,1,2,3,4的出现频次,正是1,0,1,0,0 第1行的前5列,单词编程为0,1,2,3,4的出现频次,正是7,0,2,0,0 ……

(2)查看词

# the vocab
vocab = lda.datasets.load_reuters_vocab()
print("type(vocab): {}".format(type(vocab)))
print("len(vocab): {}\n".format(len(vocab)))
print(vocab[:5])

运行结果:

type(vocab): <class 'tuple'>
len(vocab): 4258
('church', 'pope', 'years', 'people', 'mother')

可以看出,reuters.tokens中有4258个单词,前五个分别是church, pope, years, people, mother.

(3)查看文档标题

# titles for each story
titles = lda.datasets.load_reuters_titles()
print("type(titles): {}".format(type(titles)))
print("len(titles): {}\n".format(len(titles)))
print(titles[:5])       # 打印前五个文档的标题

运行结果:

type(titles): <class 'tuple'>
len(titles): 395
('0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20', 
'1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany 1996-08-21',
"2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23", 
'3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25', 
'4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25')

(4)查看前5个文档第0个词出现的次数

doc_id = 0
word_id = 0
while doc_id < 5:
    print("doc id: {} word id: {}".format(doc_id, word_id))
    print("-- count: {}".format(X[doc_id, word_id]))
    print("-- word : {}".format(vocab[word_id]))
    print("-- doc  : {}\n".format(titles[doc_id]))
    doc_id += 1

运行结果:

doc id: 0 word id: 0
-- count: 1
-- word : church
-- doc  : 0 UK: Prince Charles spearheads British royal revolution. LONDON 1996-08-20
doc id: 1 word id: 0
-- count: 7
-- word : church
-- doc  : 1 GERMANY: Historic Dresden church rising from WW2 ashes. DRESDEN, Germany 1996-08-21
doc id: 2 word id: 0
-- count: 0
-- word : church
-- doc  : 2 INDIA: Mother Teresa's condition said still unstable. CALCUTTA 1996-08-23
doc id: 3 word id: 0
-- count: 6
-- word : church
-- doc  : 3 UK: Palace warns British weekly over Charles pictures. LONDON 1996-08-25
doc id: 4 word id: 0
-- count: 0
-- word : church
-- doc  : 4 INDIA: Mother Teresa, slightly stronger, blesses nuns. CALCUTTA 1996-08-25

(二)训练模型

设置20个主题,500次迭代

model = lda.LDA(n_topics=20, n_iter=500, random_state=1)
model.fit(X)          # model.fit_transform(X) is also available

(三)主题-单词分布

计算前3个单词在所有主题(共20个)中所占的权重

topic_word = model.topic_word_
print("type(topic_word): {}".format(type(topic_word)))
print("shape: {}".format(topic_word.shape))
print(vocab[:3])
print(topic_word[:, :3])    #打印所有行(20)行的前3列

运行结果:

type(topic_word): <class 'numpy.ndarray'>
shape: (20, 4258)
('church', 'pope', 'years')
[[2.72436509e-06 2.72436509e-06 2.72708945e-03]
 [2.29518860e-02 1.08771556e-06 7.83263973e-03]
 [3.97404221e-03 4.96135108e-06 2.98177200e-03]
 [3.27374625e-03 2.72585033e-06 2.72585033e-06]
 [8.26262882e-03 8.56893407e-02 1.61980569e-06]
 [1.30107788e-02 2.95632328e-06 2.95632328e-06]
 [2.80145003e-06 2.80145003e-06 2.80145003e-06]
 [2.42858077e-02 4.66944966e-06 4.66944966e-06]
 [6.84655429e-03 1.90129250e-06 6.84655429e-03]
 [3.48361655e-06 3.48361655e-06 3.48361655e-06]
 [2.98781661e-03 3.31611166e-06 3.31611166e-06]
 [4.27062069e-06 4.27062069e-06 4.27062069e-06]
 [1.50994982e-02 1.64107142e-06 1.64107142e-06]
 [7.73480150e-07 7.73480150e-07 1.70946848e-02]
 [2.82280146e-06 2.82280146e-06 2.82280146e-06]
 [5.15309856e-06 5.15309856e-06 4.64294180e-03]
 [3.41695768e-06 3.41695768e-06 3.41695768e-06]
 [3.90980357e-02 1.70316633e-03 4.42279319e-03]
 [2.39373034e-06 2.39373034e-06 2.39373034e-06]
 [3.32493234e-06 3.32493234e-06 3.32493234e-06]]

计算所有行的比重之和(等于1)

for n in range(20):
    sum_pr = sum(topic_word[n,:])   # 第n行所有列的比重之和,等于1
    print("topic: {} sum: {}".format(n, sum_pr))

计算结果:

topic: 0 sum: 1.0000000000000875
topic: 1 sum: 1.0000000000001148
topic: 2 sum: 0.9999999999998656
topic: 3 sum: 1.0000000000000042
topic: 4 sum: 1.0000000000000928
topic: 5 sum: 0.9999999999999372
topic: 6 sum: 0.9999999999999049
topic: 7 sum: 1.0000000000001694
topic: 8 sum: 1.0000000000000906
topic: 9 sum: 0.9999999999999195
topic: 10 sum: 1.0000000000001261
topic: 11 sum: 0.9999999999998876
topic: 12 sum: 1.0000000000001268
topic: 13 sum: 0.9999999999999034
topic: 14 sum: 1.0000000000001892
topic: 15 sum: 1.0000000000000984
topic: 16 sum: 1.0000000000000768
topic: 17 sum: 0.9999999999999146
topic: 18 sum: 1.0000000000000364
topic: 19 sum: 1.0000000000001434

(四)计算各主题top-N个词

计算每个主题中,比重最大的5个词

n = 5
for i, topic_dist in enumerate(topic_word):
    topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n+1):-1]
    print('*Topic {}\n- {}'.format(i, ' '.join(topic_words)))

运行结果:

*Topic 0
- government british minister west group
*Topic 1
- church first during people political
*Topic 2
- elvis king wright fans presley
*Topic 3
- yeltsin russian russia president kremlin
*Topic 4
- pope vatican paul surgery pontiff
*Topic 5
- family police miami versace cunanan
*Topic 6
- south simpson born york white
*Topic 7
- order church mother successor since
*Topic 8
- charles prince diana royal queen
*Topic 9
- film france french against actor
*Topic 10
- germany german war nazi christian
*Topic 11
- east prize peace timor quebec
*Topic 12
- n't told life people church
*Topic 13
- years world time year last
*Topic 14
- mother teresa heart charity calcutta
*Topic 15
- city salonika exhibition buddhist byzantine
*Topic 16
- music first people tour including
*Topic 17
- church catholic bernardin cardinal bishop
*Topic 18
- harriman clinton u.s churchill paris
*Topic 19
- century art million museum city

(五)文档-主题分布

总共有395篇文档,计算前10篇文档最可能的主题

doc_topic = model.doc_topic_
print("type(doc_topic): {}".format(type(doc_topic)))
print("shape: {}".format(doc_topic.shape))
for n in range(10):
    topic_most_pr = doc_topic[n].argmax()
    print("doc: {} topic: {}".format(n, topic_most_pr))

运行结果:

type(doc_topic): <class 'numpy.ndarray'>
shape: (395, 20)
doc: 0 topic: 8
doc: 1 topic: 1
doc: 2 topic: 14
doc: 3 topic: 8
doc: 4 topic: 14
doc: 5 topic: 14
doc: 6 topic: 14
doc: 7 topic: 14
doc: 8 topic: 14
doc: 9 topic: 8

(六)可视化分析

(1)绘制主题0、主题5、主题9、主题14、主题19的词出现次数分布

import matplotlib.pyplot as plt
f, ax = plt.subplots(5, 1, figsize=(8, 6), sharex=True)
for i, k in enumerate([0, 5, 9, 14, 19]):
    print(i, k)
    ax[i].stem(topic_word[k, :], linefmt='b-',
               markerfmt='bo', basefmt='w-')
    ax[i].set_xlim(-50, 4350)
    ax[i].set_ylim(0, 0.08)
    ax[i].set_ylabel("Prob")
    ax[i].set_title("topic {}".format(k))
ax[4].set_xlabel("word")
plt.tight_layout()
plt.show()

运行结果:

(2)绘制文档1、文档3、文档4、文档8和文档9的主题分布

f, ax = plt.subplots(5, 1, figsize=(8, 6), sharex=True)
for i, k in enumerate([1, 3, 4, 8, 9]):
    ax[i].stem(doc_topic[k, :], linefmt='r-',
               markerfmt='ro', basefmt='w-')
    ax[i].set_xlim(-1, 21)
    ax[i].set_ylim(0, 1)
    ax[i].set_ylabel("Prob")
    ax[i].set_title("Document {}".format(k))
ax[4].set_xlabel("Topic")
plt.tight_layout()
plt.show()

运行结果:

五、完整代码

import numpy as np
import lda
import lda.datasets
# document-term matrix
X = lda.datasets.load_reuters()
print("type(X): {}".format(type(X)))
print("shape: {}\n".format(X.shape))
print(X[:5, :5])        #前五行的前五列
# the vocab
vocab = lda.datasets.load_reuters_vocab()
print("type(vocab): {}".format(type(vocab)))
print("len(vocab): {}\n".format(len(vocab)))
print(vocab[:5])
# titles for each story
titles = lda.datasets.load_reuters_titles()
print("type(titles): {}".format(type(titles)))
print("len(titles): {}\n".format(len(titles)))
print(titles[:5])       # 打印前五个文档的标题
print("\n************************************************************")
doc_id = 0
word_id = 0
while doc_id < 5:
    print("doc id: {} word id: {}".format(doc_id, word_id))
    print("-- count: {}".format(X[doc_id, word_id]))
    print("-- word : {}".format(vocab[word_id]))
    print("-- doc  : {}\n".format(titles[doc_id]))
    doc_id += 1
topicCnt = 20
model = lda.LDA(n_topics = topicCnt, n_iter = 500, random_state = 1)
model.fit(X)          # model.fit_transform(X) is also available
print("\n************************************************************")
topic_word = model.topic_word_
print("type(topic_word): {}".format(type(topic_word)))
print("shape: {}".format(topic_word.shape))
print(vocab[:3])
print(topic_word[:, :3])    #打印所有行(20)行的前3列
for n in range(20):
    sum_pr = sum(topic_word[n,:])   # 第n行所有列的比重之和,等于1
    print("topic: {} sum: {}".format(n, sum_pr))
print("\n************************************************************")
n = 5
for i, topic_dist in enumerate(topic_word):
    topic_words = np.array(vocab)[np.argsort(topic_dist)][:-(n+1):-1]
    print('*Topic {}\n- {}'.format(i, ' '.join(topic_words)))
print("\n************************************************************")
doc_topic = model.doc_topic_
print("type(doc_topic): {}".format(type(doc_topic)))
print("shape: {}".format(doc_topic.shape))
for n in range(10):
    topic_most_pr = doc_topic[n].argmax()
    print("doc: {} topic: {}".format(n, topic_most_pr))
print("\n************************************************************")
import matplotlib.pyplot as plt
f, ax = plt.subplots(5, 1, figsize=(8, 6), sharex=True)
for i, k in enumerate([0, 5, 9, 14, 19]):
    print(i, k)
    ax[i].stem(topic_word[k, :], linefmt='b-',
               markerfmt='bo', basefmt='w-')
    ax[i].set_xlim(-50, 4350)
    ax[i].set_ylim(0, 0.08)
    ax[i].set_ylabel("Prob")
    ax[i].set_title("topic {}".format(k))
ax[4].set_xlabel("word")
plt.tight_layout()
plt.show()
print("\n************************************************************")
f, ax = plt.subplots(5, 1, figsize=(8, 6), sharex=True)
for i, k in enumerate([1, 3, 4, 8, 9]):
    ax[i].stem(doc_topic[k, :], linefmt='r-',
               markerfmt='ro', basefmt='w-')
    ax[i].set_xlim(-1, 21)
    ax[i].set_ylim(0, 1)
    ax[i].set_ylabel("Prob")
    ax[i].set_title("Document {}".format(k))
ax[4].set_xlabel("Topic")
plt.tight_layout()
plt.show()

六、参考资料

(1) https://blog.csdn.net/eastmount/article/details/50824215

(2)http://chrisstrelioff.ws/sandbox/2014/11/13/getting_started_with_latent_dirichlet_allocation_in_python.html

七、推荐阅读

《LDA漫游指南》

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-05-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 海天一树 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、LDA简介
  • 二、安装LDA库
  • 三、了解数据集
  • 四、程序实现
    • (一)载入数据
      • (二)训练模型
        • (三)主题-单词分布
          • (四)计算各主题top-N个词
            • (五)文档-主题分布
              • (六)可视化分析
              • 五、完整代码
              • 六、参考资料
              • 七、推荐阅读
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档