Spark RDD Map Reduce 基本操作

1 RDD是什么?

RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD。从编程的角度来看,RDD可以简单看成是一个数组。和普通数组的区别是,RDD中的数据是分区存储的,这样不同分区的数据就可以分布在不同的机器上,同时可以被并行处理。因此,Spark应用程序所做的无非是把需要处理的数据转换为RDD,然后对RDD进行一系列的变换和操作从而得到结果。本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中。

如何创建RDD?

RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来。

举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们分别在3个分区中。

scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:12

举例:读取文件README.md来创建RDD,文件中的每一行就是RDD中的一个元素

scala> val b = sc.textFile("README.md")
b: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console>:12

虽然还有别的方式可以创建RDD,但在本文中我们主要使用上述两种方式来创建RDD以说明RDD的API。

map

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

举例:

 val a = sc.parallelize(1 to 9, 3)val b = a.map(x => x*2)
a.collectArray[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
b.collectArray[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18)

上述例子中把原RDD中每个元素都乘以2来产生一个新的RDD。   

mapPartitions

mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。 它的函数定义为:

def mapPartitionsU: ClassTag: RDD[U] f即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。最终的RDD由所有分区经过输入函数处理后的结果合并起来的。

举例:

scala> val a = sc.parallelize(1 to 9, 3)
scala> def myfunc[T](iter: Iterator[T]) : Iterator[(T, T)] = {    var res = List[(T, T)]()    var pre = iter.next while (iter.hasNext) {        val cur = iter.next;
        res .::= (pre, cur) pre = cur;
    }
    res.iterator
}
scala> a.mapPartitions(myfunc).collect
res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))

上述例子中的函数myfunc是把分区中一个元素和它的下一个元素组成一个Tuple。因为分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。 mapPartitions还有些变种,比如mapPartitionsWithContext,它能把处理过程中的一些状态信息传递给用户指定的输入函数。还有mapPartitionsWithIndex,它能把分区的index传递给用户指定的输入函数。  

mapValues

mapValues顾名思义就是输入函数应用于RDD中Kev-Value的Value,原RDD中的Key保持不变,与新的Value一起组成新的RDD中的元素。因此,该函数只适用于元素为KV对的RDD。

举例:

scala> val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
scala> val b = a.map(x => (x.length, x))
scala> b.mapValues("x" + _ + "x").collect
res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx),(3,xcatx), (7,xpantherx), (5,xeaglex))

mapWith

mapWith是map的另外一个变种,map只需要一个输入函数,而mapWith有两个输入函数。它的定义如下:

def mapWith[A: ClassTag, U: ](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => U): RDD[U]

第一个函数constructA是把RDD的partition index(index从0开始)作为输入,输出为新类型A; 第二个函数f是把二元组(T, A)作为输入(其中T为原RDD中的元素,A为第一个函数的输出),输出类型为U。 举例:把partition index 乘以10,然后加上2作为新的RDD的元素。

val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)
x.mapWith(a => a * 10)((a, b) => (b + 2)).collect
res4: Array[Int] = Array(2, 2, 2, 12, 12, 12, 22, 22, 22, 22)

flatMap

与map类似,区别是原RDD中的元素经map处理后只能生成一个元素,而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。 举例:对原RDD中的每个元素x产生y个元素(从1到y,y为元素x的值)

scala> val a = sc.parallelize(1 to 4, 2)
scala> val b = a.flatMap(x => 1 to x)
scala> b.collect
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4)

flatMapWith

flatMapWith与mapWith很类似,都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A;另外一个函数是以二元组(T,A)作为输入,输出为一个序列,这些序列里面的元素组成了新的RDD。它的定义如下:

def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]

举例:

scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,8, 2, 9)

flatMapValues

flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每个一元素的Value被输入函数映射为一系列的值,然后这些值再与原RDD中的Key组成一系列新的KV对。

举例

scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> val b = a.flatMapValues(x=>x.to(5))
scala> b.collect
res3: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (3,4), (3,5))

上述例子中原RDD中每个元素的值被转换为一个序列(从其当前值到5),比如第一个KV对(1,2), 其值2被转换为2,3,4,5。然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。

reduce

reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止。

举例

scala> val c = sc.parallelize(1 to 10)
scala> c.reduce((x, y) => x + y)
res4: Int = 55

上述例子对RDD中的元素求和。

reduceByKey

顾名思义,reduceByKey就是对元素为KV对的RDD中Key相同的元素的Value进行reduce,因此,Key相同的多个元素的值被reduce为一个值,然后与原RDD中的Key组成一个新的KV对。

举例:

scala scala> val a = sc.parallelize(List((1,2),(3,4),(3,6))) scala> a.reduceByKey((x,y) => x + y).collect res7: Array[(Int, Int)] = Array((1,2), (3,10))

上述例子中,对Key相同的元素的值求和,因此Key为3的两个元素被转为了(3,10)。

原文发布于微信公众号 - 加米谷大数据(DtinoneBD)

原文发表时间:2018-04-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏个人分享

spark RDD transformation与action函数整理

3.过滤 filter 需要注意的是 filter并不会在原有RDD上过滤,而是根据filter的内容重新创建了一个RDD

25720
来自专栏Albert陈凯

2018-11-17 Spark算子练习常用Transformation(即转换,延迟加载)通过并行化scala集合创建RDD查看该rdd的分区数量union求并集,注意类型要一致intersecti

################################################################################...

21920
来自专栏包子铺里聊IT

那些年我们一起遍历过的树

这篇博文想和大家讨论一下tree的traversal有哪些方法。当然我们都很熟悉DFS(InOrder, PreOrder, PostOrder)和BFS,这...

27370
来自专栏用户2442861的专栏

Java的 transient关键字

哎,虽然自己最熟的是Java,但很多Java基础知识都不知道,比如transient关键字以前都没用到过,所以不知道它的作用是什么,今天做笔试题时发现有一题是...

9620
来自专栏数据结构与算法

2570 绝对素数

2570 绝对素数 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 一个自然数...

36070
来自专栏高爽的专栏

Java序列化(二)

    上文中实现了序列化和逆序列化一个简单的Name对象,下面来看一个稍复杂的情况,Name类中复合了其它类。        Name.java: ...

21500
来自专栏数据之美

Spark函数讲解: combineByKey

1、背景 在数据分析中,处理Key,Value的Pair数据是极为常见的场景,例如我们可以针对这样的数据进行分组、聚合或者将两个包含Pair数据的RDD根据ke...

27860
来自专栏SeanCheney的专栏

《Pandas Cookbook》第01章 Pandas基础

公司网址,http://www.dunderdata.com(dunder是蒸馏朗姆酒的残留液体,取这个名字是类比数据分析过程) GitHub地址:https...

16920
来自专栏从零开始学自动化测试

Selenium2+python自动化42-判断元素(expected_conditions)

前言 经常有小伙伴问,如何判断一个元素是否存在,如何判断alert弹窗出来了,如何判断动态的元素等等一系列的判断,在selenium的expected_cond...

47370
来自专栏数据之美

Python Tips, Tricks, and Hacks

一、快速技巧 1.1、4 种引号 '  '''  "  """  print """I wish that I'd never heard him say...

27550

扫码关注云+社区

领取腾讯云代金券