OpenCV图像噪声与去噪函数方法对比使用介绍

一:噪声类型与去噪声方法介绍

图像去噪在二值图像分析、OCR识别预处理环节中十分重要,最常见的图像噪声都是因为在图像生成过程中因为模拟或者数字信号受到干扰而产生的,常见的噪声类型有如下:

  • 椒盐噪声
  • 高斯噪声
  • 泊松噪声
  • 乘性噪声

OpenCV中有多个可以降低图像噪声、对图像实现平滑滤波的函数,最常见的就是均值模糊与高斯模糊,它们都可以在一定程度上减低上述几种噪声,另外还有中值模糊、双边模糊、非局部去噪等函数方法可以使用,针对特定种类的噪声,使用有针对性函数与合理的参数可以取得较好的效果: 函数名称 去噪效果

  • blur 对各种噪声都有一定的抑制作用
  • GaussianBlur 对随机噪声比较好,对椒盐噪声效果不好
  • medianBlur 对椒盐噪声效果比较好
  • fastNlMeansDenoising 非局部去噪,速度很慢,可以调参的去噪方法
  • fastNlMeansDenoisingColored 同上,去噪针对彩色图像

对于fastNIMeansDenoising方法来说,只支持输入是灰度图像的,各个参数意义如下:

fastNlMeansDenoising (
src // 输入图像
dst=None, // 输出结果
h=None, // h值越大表示去噪声力度越大,同时细节丢失也越多,默认10即可。
templateWindowSize=None, // 相似性权重计算窗口大小,一般为5~15之间
searchWindowSize=None// 搜索窗口,大小可以设置为相似性计算窗口大小的3~5倍即可。
)

二:程序效果演示

椒盐噪声图像

中值滤波结果

非局部均值去噪声结果

高斯噪声图像

中值滤波结果

非局部均值去噪声结果

Python版本源代码如下:

def denoise_demo():
    src = cv.imread("D:/javaopencv/lenanoise2.png")
    cv.imshow("input", src)
    # 相似窗口大小5, 搜索窗口大小25
    # h = 10, h 越大表示去噪声效果越好,细节越丢失
    dst = cv.fastNlMeansDenoisingColored(src, None, 15, 15, 7, 21)

    gray= cv.cvtColor(src, cv.COLOR_BGR2GRAY)
    gret = cv.fastNlMeansDenoising(gray, None, 15, 8, 25)
    cv.imshow("denoise", dst)
    cv.imshow("result", gret)
    cv.imwrite("D:/nim_result.png", dst)


def salt_pepper_noise():
    src = cv.imread("D:/javaopencv/lenanoise.png")
    cv.imshow("input", src)
    # ksize必须是大于1 奇数3\5\7\9\11
    dst = cv.medianBlur(src, 5)
    cv.imshow("denoise", dst)
    cv.imwrite("D:/sp_result.png", dst)

从上面可以看出,对椒盐噪声中值滤波效果比较好,对高斯噪声非局部均值去噪效果比较好!

原文发布于微信公众号 - OpenCV学堂(CVSCHOOL)

原文发表时间:2018-05-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏拭心的安卓进阶之路

Java 集合深入理解(12):古老的 Vector

今天刮台风,躲屋里看看 Vector ! 都说 Vector 是线程安全的 ArrayList,今天来根据源码看看是不是这么相...

2547
来自专栏计算机视觉与深度学习基础

Leetcode 114 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given...

2098
来自专栏ml

朴素贝叶斯分类器(离散型)算法实现(一)

1. 贝叶斯定理:        (1)   P(A^B) = P(A|B)P(B) = P(B|A)P(A)   由(1)得    P(A|B) = P(B|...

3597
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

3977
来自专栏xingoo, 一个梦想做发明家的程序员

20120918-向量实现《数据结构与算法分析》

#include <iostream> #include <list> #include <string> #include <vector> #include...

1856
来自专栏MelonTeam专栏

ArrayList源码完全分析

导语: 这里分析的ArrayList是使用的JDK1.8里面的类,AndroidSDK里面的ArrayList基本和这个一样。 分析的方式是逐个API进行解析 ...

4699
来自专栏后端之路

LinkedList源码解读

List中除了ArrayList我们最常用的就是LinkedList了。 LInkedList与ArrayList的最大区别在于元素的插入效率和随机访问效率 ...

21010
来自专栏学海无涯

Android开发之奇怪的Fragment

说起Android中的Fragment,在使用的时候稍加注意,就会发现存在以下两种: v4包中的兼容Fragment,android.support.v4.ap...

3215
来自专栏xingoo, 一个梦想做发明家的程序员

AOV网络拓扑排序

这个算法,主要是为输出一个无环图的拓扑序列 算法思想: 主要依赖一个栈,用来存放没有入度的节点,每次读取栈顶元素,并将栈顶元素的后继节点入度减一,如果再次出现入...

1975
来自专栏刘君君

JDK8的HashMap源码学习笔记

3288

扫码关注云+社区