学界 | 多伦多大学开发反人脸识别系统,识别成功率降至0.5%

“刷脸”,作为一种个人身份鉴别技术,这些年在图像处理、深度学习等技术的护持下精度大幅提升,在LFW上,各大玩家在无限制条件下人脸验证测试(unrestricte)

“刷脸”,作为一种个人身份鉴别技术,在深度学习等技术的护持下精度得以大幅提升,在LFW上,各大玩家在无限制条件下人脸验证测试(unrestricted labeled outside data)中提交的成绩普遍能够达到 99.5% 以上。

人脸识别技术日益成熟的背后,作为自带AI落地基因的安防行业(数据大、高试错容忍度),这几年,天网工程广泛铺开、智能系统全局应用,城市秩序得到了更为高效的管理和防护,民生需求得到了更为及时的处理和反馈,违反乱纪的行为能被精准识别和处罚。

与此同时,人脸识别系统的应用也颇受争议。

在大洋彼岸的美国,亚马逊因向美国执法机构提供人脸识别技术而遭到某联盟的谴责。该联盟表示,“亚马逊以十分低廉的价格向美国警方提供人脸识别服务,可能会导致美国公民的私人数据被滥用及隐私遭到侵犯”。

在他们看来,将人脸识别技术应用到前端视频监控摄像机上,可能会打破隐私及实用性之间的平衡。假设美国警方有若干台这样的安防摄像机,同时拥有可疑人员的“黑名单”照片库,那么其他任何人如果与这些可疑人员有一些相像,一旦进入警察的安防摄像机的镜头之内,都有可能受到警务人员的盘问。而大多数美国人不希望生活在那样的世界里。

从这来看,技术应用的双刃剑在人脸识别的落地上就得以体现,且不说人脸识别技术发展对于人类来说优多(安全)还是劣多(隐私),硬币抛下落地的可能性还是得到了平衡。

近日,多伦多大学教授 Parham Aarabi 和他的研究生 Avishek Bose 开发了一种算法,通过对图像进行“光转换”,可以动态地破坏人脸识别系统。

与上述联盟控诉亚马逊的理由一样,这位大学教授也考虑到了隐私问题,“随着人脸识别技术越来越先进,个人隐私成为了一个真正急需解决的问题,这就是反人脸识别系统被研发的原因,也是该系统的用武之地。”

根据Aarabi的说法,他们主要采用了对抗训练(adversarial training)技术,使得两个神经网络相互对抗,一个神经网络从数据中获取信息(人脸数据),另一个神经网络试图去破坏第一个神经网络执行的任务。

据悉,他们的算法是在包含不同种族,不同光照条件和背景环境下的超过600张人脸照片的数据集上进行训练的(业界标准库),两个神经网络相互对抗会发形成一个实时的“过滤器”,它可以应用到任何图片上。因为它的目标——图像中的单个像素是特定的,改变一些特定像素,肉眼是几乎无法察觉的。比如说检测网络正在寻找眼角,干扰算法就会调整眼角,使得眼角的像素不那么显眼。算法在照片中造成了非常微小的干扰,但对于检测器来说,这些干扰足以欺骗系统。

“此前多年,这些算法必须由人类去定义,现在的神经网络可以自主学习。目前我们的算法将人脸识别系统中被检测到的人脸的比例降低到了 0.5% 。我们希望在APP或网站上提供这种神经网络系统,这是一个非常有意思的领域,有着非常大的潜力市场,”Aarabi 教授说道,“另外研究报告也将在 2018 年 IEEE 国际多媒体信号处理研讨会上发表”。

其实,破坏人脸识别产品识别率的产品并不少见。早在 2016 年,卡内基梅隆大学的研究人员就设计了一种眼镜框,可以误导面部识别系统,使其产生错误的识别。

该类软件在学习人脸的模样时,它非常依靠于特定的细节,如鼻子和眉毛的形状。卡内基梅隆大学打造的眼镜并不只是覆盖那些脸部细节,还会印上被计算机认为是人脸细节的图案。

本文分享自微信公众号 - AI科技评论(aitechtalk)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-06-05

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏罗超频道

忘了黄金时代,理性看待大数据预测

在世界杯预测时准确率超高的百度大数据预测在稳步推进时遇到了一个小障碍,尚处于内测的票房预测对《黄金时代》的预测与实际结果出现了偏差,被媒体长篇报道引发业内高度...

36240
来自专栏量子位

乔丹LeCun李开复隔空对话:我们对智能一无所知;AI研究的12大趋势

三位AI领域的标志性人物:乔丹(Michael I. Jordan)、杨立昆(Yann LeCun)、李开复,刚刚结束了一场隔空对话。

10520
来自专栏PPV课数据科学社区

人工智能革命:为什么深度学习会突然改变你的生活?(上)

? 编者按:过去4年,大家无疑已经注意到大范围的日常技术在质量方面已经取得了巨大突破。这背后基本上都有深度学习的影子。到底什么是深度学习?深度学习是如何发展到...

38980
来自专栏机器之心

谁来治好AI的「幻觉」?面对众多对抗样本攻击,深度神经网络该何去何从

选自Wired 作者:Tom Simonite 机器之心编译 参与:路雪、黄小天 2 月 3 日,来自 MIT、UC Berkeley 的 Athalye 等人...

37760
来自专栏大数据文摘

大咖 | 清华大学王生进教授:人像态势识别及其在智能视频监控中的应用

49950
来自专栏机器之心

GMIS 2017 | 伯克利教授Stuart Russell:人工智能的过去、现在和未来

机器之心原创 机器之心编辑部 全球机器智能峰会(GMIS 2017),是全球人工智能产业信息服务平台机器之心举办的首届大会,邀请了来自美国、欧洲、加拿大及国内的...

29780
来自专栏CDA数据分析师

R 语言数据分析师养成计划——从零开始的 14 个任务

作者 CDA数据分析师 1992年,肉丝(Ross Ihaka)和萝卜特(Robert Gentleman)两个人在S语言(贝尔实验室开发的一种统计用编程语...

34470
来自专栏新智元

深度 |《财富》万字长文回溯深度学习革命,盘点 16 大历史时刻

【新智元导读】《财富》今日刊文,深度报道阐述深度学习推动的人工智能如何在整个计算生态系统引发革命。文章从深度学习发展的历史关键点入手,介绍重大的标志性技术突破,...

35750
来自专栏镁客网

人工智能已到瓶颈!院士“联名”反深度学习,并指出AI未来发展方向

针对当下深度学习的技术瓶颈,包括清华大学张钹在内的多位院士、教授给出了自己的研究思路。

20570
来自专栏新智元

更正 |《财富》万字长文回溯深度学习革命,盘点 16 大历史时刻

【新智元导读】《财富》封面文章报道深度学习推动的人工智能如何在整个计算生态系统引发革命。文章从深度学习发展的历史关键点入手,介绍重大的标志性技术突破,讲述了 H...

35070

扫码关注云+社区

领取腾讯云代金券