前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【随笔记录】1*1卷积核的作用

【随笔记录】1*1卷积核的作用

作者头像
机器学习算法工程师
发布2018-07-27 10:12:59
1.2K0
发布2018-07-27 10:12:59
举报

作者:石文华

编辑:祝鑫泉

前 言

之前只是知道1x1的卷积核用在Inception模块中具有降维的作用,并没有认真的思考它是怎么样实现降维的,以及它还有哪些作用。于是查阅了一些资料,并记录了它的一些作用,如下:

01

灵活的控制特征图的深度

1x1的卷积核由于大小只有1x1,所以并不需要考虑像素跟周边像素的关系,它主要用于调节通道数,对不同的通道上的像素点进行线性组合,然后进行非线性化操作,可以完成升维和降维的功能,如下图所示,选择2个1x1大小的卷积核,那么特征图的深度将会从3变成2,如果使用4个1x1的卷积核,特征图的深度将会由3变成4。

02

减少参数

前面所说的降维,其实也是减少了参数,因为特征图少了,参数也自然跟着就减少,相当于在特征图的通道数上进行卷积,压缩特征图,二次提取特征,使得新特征图的特征表达更佳。接着再通过两个例子来看看它是如何减少参数的。 1、在GoogleNet的3a模块中,假设输入特征图的大小是28*28*192,1x1卷积通道为64,3x3卷积通道为128,5x5卷积通道为32,如下图所示:

左边的卷积核参数计算如下: 192 × (1×1×64) +192 × (3×3×128) + 192 × (5×5×32) = 387072 而右图的3x3卷积层前加入通道数为96的1x1的卷积,5x5的特征图后面加入通道数为16的1x1的卷积,参数的计算如下: 192 × (1×1×64) +(192×1×1×96+ 96 × 3×3×128)+(192×1×1×16+16×5×5×32)= 157184 Inception结构相关内容补充: Inception 结构的主要思路是怎样用密集成分来近似最优的局部稀疏结构。 上面左图是作者提出来的基本结构,说明如下: (1)采用不同大小的卷积核意味着不同大小的感受野,最后拼接意味着不同尺度特征的融合; (2)之所以卷积核大小采用1、3和5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定pad=0、1、2,那么卷积之后便可以得到相同维度的特征,然后这些特征就可以直接拼接在一起了; (3)文章说很多地方都表明pooling挺有效,所以Inception里面也嵌入了。 (4)网络越到后面,特征越抽象,而且每个特征所涉及的感受野也更大了,因此随着层数的增加,3x3和5x5卷积的比例也要增加。 Factorizing Convolutions with Large Filter Size,也就是分解大的卷积,用小的卷积核替换大的卷积核,因为大尺寸的卷积核可以带来更大的感受野,但也意味着更多的参数,比如5x5卷积核参数是3x3卷积核的25/9=2.78倍。因此可以用2个连续的3x3卷积层(stride=1)组成的小网络来代替单个的5x5卷积层,(保持感受野范围的同时又减少了参数量),也就产生了Inception V2;而nxn的卷积核又可以通过1xn卷积后接nx1卷积来替代,也就是Inception V3结构,但是作者发现在网络的前期使用这种分解效果并不好,还有在中度大小的feature map上使用效果才会更好。(对于mxm大小的feature map,建议m在12到20之间). 如下图:从左到右是Inception V1~IncVeption V3,需要指出的是将7´7卷积拆成1x7卷积和7x1卷积,比拆成3个3x3卷积更节约参数

2、在ResNet模块中,假设输入的特征图的维度是w*h*256,并且最后要输出的也是256个特征图,如下图所示:

左边的计算如下: w*h*256*3*3*256 =589824*w*h 右边的计算如下: w*h*256*1*1*64 + w*h*64*3*3*64 +w*h*64*1*1*256 = 69632*w*h 结果相差大概8.5倍。 3、实现了跨通道的信息组合,并增加了非线性特征 使用1*1卷积核,实现降维和升维的操作其实就是channel间信息的线性组合变化,3*3,64channels的卷积核前面添加一个1*1,28channels的卷积核,就变成了3*3,28channels的卷积核,原来的64个channels就可以理解为跨通道线性组合变成了28channels,这就是通道间的信息交互。因为1*1卷积核,可以在保持feature map尺度不变的(即不损失分辨率)的前提下大幅增加非线性特性(利用后接的非线性激活函数),把网络做的很deep,增加非线性特性。

03

参考文献

https://blog.csdn.net/a1154761720/article/details/53411365/ https://www.zhihu.com/question/56024942/answer/369745892 http://lib.csdn.net/article/aimachinelearning/66253 https://blog.csdn.net/app_12062011/article/details/62216987

往期回顾之作者石文华

【1】(Keras/监督学习)15分钟搞定最新深度学习车牌OCR

【2】干货|(DL~2)一看就懂的卷积神经网络

【3】深度学习以及卷积基础

【4】基础|认识机器学习中的逻辑回归、决策树、神经网络算法

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-06-07,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法工程师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 灵活的控制特征图的深度
  • 减少参数
  • 前面所说的降维,其实也是减少了参数,因为特征图少了,参数也自然跟着就减少,相当于在特征图的通道数上进行卷积,压缩特征图,二次提取特征,使得新特征图的特征表达更佳。接着再通过两个例子来看看它是如何减少参数的。 1、在GoogleNet的3a模块中,假设输入特征图的大小是28*28*192,1x1卷积通道为64,3x3卷积通道为128,5x5卷积通道为32,如下图所示:
  • 参考文献
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档