UnifyID的研究人员使用神经网络生成风格化图像扰乱API识别

AiTechYun

编辑:chux

肉眼可以相对容易地将猫的图片与迷惑人的版本连接起来,但这对于现成的计算机视觉API并非总是如此。在CVPR会议上,来自UnifyID的研究人员证明,猫科动物的风格化照片欺骗到Watson的物体识别工具概率超过97.5%。

研究人员使用了一个神经网络,Magenta是Google Brain团队开发的一个开源TensorFlow研究项目,可以生成歌曲,图像和绘图,将猫的图片转化为立体派和毕加索式的创作。

一开始,计算机视觉算法在识别不同品种,毛皮长度和颜色的猫时没有困难。当样式转换算法的插值权重设置在0(原始图像)和0.1(轻微程式化图像)之间时,机器学习算法以高置信度(97-99%)将图像分类为“猫”。但是随着研究人员开始推测插值,图片变得越来越后印象化,算法的猜测从“猫”,“猫科动物”,“食肉动物”变成了“玻璃纸”,“飞蛾”和“无脊椎动物”。

“虽然这两幅图像肉眼难以区分,但分类器为这两幅图像指定的标签结果却大不相同,”UnifyID的首席机器学习科学家Vinay Prabhu在一篇文章中写道。

IBM Watson的标签预测

在第二次更大规模的测试中,使用从Kaggle Dogs and Cats数据集中随机选择的200张猫咪图像,研究人员在通过Watson Visual Recognition API运行之前应用了样式转换。结果,算法压倒性地将猫识别为“疯狂的被子”,“迷彩”,“马赛克”和“拼凑图”。

Prabhu说:“目标不是宣布新的攻击黑匣子方法或者反对使用商业API。除了展示将样式转换视为对抗性示例生成技术的潜力之外,我们还希望引起人们关注围绕定义构成图像类别或标签的内在模糊性,以及是什么导致了图像的错误分类。”

这不是研究“对抗性干扰”或者是为了欺骗计算机视觉算法的第一个例子。2017年10月,九州大学和麻省理工学院的研究人员演示了一种改变图像中单个像素的算法,导致AI对对象进行错误分类。而在去年12月,麻省理工学院的学生成功欺骗了Google的Cloud Vision服务,将狗的图像识别为“滑雪者”。

原文发布于微信公众号 - ATYUN订阅号(atyun_com)

原文发表时间:2018-06-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏我是攻城师

近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)

65870
来自专栏机器之心

观点 | Geoffrey Hinton:放弃反向传播,我们的人工智能需要重头再来

选自Axios 机器之心编译 三十多年前,深度学习著名学者 Geoffrey Hinton 参与完成了论文《Experiments on Learning by...

321100
来自专栏灯塔大数据

塔荐 | 人工智能工程师的三个层次

导 读 Google Tensorflow框架的Contributor。在计算机视觉领域有深厚的工业经验,带领团队开发的“花伴侣”植物识别App,上线数月即在0...

35330
来自专栏华章科技

500款各领域机器学习数据集,总有一个是你要找的

美国劳工部统计局官方发布数据:http://dataju.cn/Dataju/web/datasetInstanceDetail/139

32110
来自专栏AI科技评论

问答系统冠军之路:用CNN做问答任务的QANet

AI 科技评论按:当前,整个人工智能领域对自然语言处理技术的热情可谓空前高涨。一方面,这是由于借着深度学习的东风,计算机在各种自然语言处理任务中的表现有了突飞猛...

32920
来自专栏数据派THU

独家 | 一文读懂优化算法

一、前言 模拟退火、遗传算法、禁忌搜索、神经网络等在解决全局最优解的问题上有着独到的优点,其中共同特点就是模拟了自然过程。模拟退火思路源于物理学中固体物质的退火...

860100
来自专栏新智元

解密 NIPS2016 论文评议内幕(附 DeepMind 8 篇论文下载)

【新智元导读】备受推崇的顶级会议NIPS预计12月举行,但从4月起议论就没有停,尤其是围绕论文。今天,组织方公开了NIPS 2016论文评议过程,本文就从这届会...

396150
来自专栏人工智能头条

近200篇机器学习/深度学习资料分享(含各种文档,视频,源码等)

26530
来自专栏人工智能LeadAI

最全常见算法工程师面试题目整理(二)

接着上回写的《最全常见算法工程师面试题目整理(一)》,继续填接下来的坑。 11boost算法的思路是什么样的?讲一下你对adaboost 和 gbdt的了解? ...

64360
来自专栏量化投资与机器学习

【精选】神经网络应用于算法交易

今天编辑部带来关于在基于金融时间序列的预测模型案例,我们将通过神经网络来增强一个经典的移动平均策略,并表明它真的是有所改善相对原策略。

315120

扫码关注云+社区

领取腾讯云代金券