专栏首页大数据杂谈大数据实战:知乎百万用户分析

大数据实战:知乎百万用户分析

本文来源:http://wuzuozhi.com/

背景

这几天,同事都去出差,稍有感冒的我提前在办公室感受到了“孤独终老”的恐惧。 于是,我想在自己有能力并且还有激情的时候,去做一些以后值得回忆的事。我萌生了去“探望”下知乎的念头。

前言

我个人是15年注册知乎,三年过去了,我个人主页数据是:

我一直不喜欢知乎上面的氛围,但是通过知乎我确实拿到了很多学习、设计、阅读和产品灵感的资源,都是通过知乎链接到其他平台;在此也感谢这个平台给每一个求知者带来的帮助和启发。这次我将利用知乎用户的数据,从数据分析的角度,以用户、区域、行业、专业、大学、喜欢数、粉丝数和性别为交叉对比展开分析,因为我迫切想知道,那些大 V 从哪来,做了什么事,是个什么背景等等像打了马赛克一样的信息。下面我们一一展开。

数据

直接爬取知乎的用户数据,包括ID、粉丝数量、工作信息、回答数量、文章数量等等。

部分数据不完整,gender 列中“1”表示男,对应的“0”就是女啦。

这些用户的分布区域是什么样的

拿到这些数据,我一开始不关注用户的性别,我知道,这个参考价值并不高,因为,我在一些社区都会在性别那一栏填上“女”。 于是, 根据用户的地域信息,得到如下这张图

气泡大小表示数据多少,很明显北京和上海的用户是最多的,这个地区分布有着什么样的潜在含义?读者可以思考下这个问题,后面的分析会给出答案。

用户分布区域决定这个区域的回答数量吗

其实在做下面这张图之前,我的猜想的答案是肯定的,很明显嘛,哪里人多,自然而然的就会回答多一些,但是我注册知乎后的个人数据又说明存在特例:有的用户都不喜欢回答。带着疑问我做了下面这个分析,看看这些区域的同学是不是平常贡献答案最勤快的。

这个图几乎和上面的完全吻合,用这个图来说明“我的猜想是正确的”并不合适,但是用这个图来打消你心中对这个猜想准确性所产生的疑虑,应该足够了。

用户都来自哪些大学

我乍一看这个图,我就知道数据有问题,虽然学校的排名与上面地域占比的关系吻合(清华、北大排第一第二与北京用户最多符合常识)的,但是整体数据量太小了,我回头看一下原始的数据,我发现“学校”这个字段下面的值都大多都是“Null”,在处理做图的时候默认过滤空值。发现这个之后,比较庆喜,至少这展示出来的部分数据真实性很高,因为不想公开自己大学的用户可以直接不填(也就是Null)而不会出现不是北大填北大的现象;如果有,那这样的人,我们忽略他吧。

哪个大学的用户贡献的答案最多

我们都知道,知乎是一个问答社区,贡献自己的回答,来帮助他人,从知识的领域,将雷锋精神发扬光大。那么哪个学校的用户总体回答数最高呢?

最喜欢回答问题的用户大多来自武汉大学,紧据第二的是复旦大学,前四名被武汉和上海两个城市占据。 这个时候也许你和我一样,那用户数占据最多的北京大学呢?我个人现在的解释是:知乎总部位于北京,在平台冷启动之初,种子用户的大学这个字段的值都是“北京大学”,那批用户开始塑造社区氛围后,后面就“隐居山林”了,如李开复博士;所以后面用户量大起来,发言次数每排上榜就是正常的啦。

用户粉丝的多少与哪些因素有关

这是知乎用户的粉丝排行榜,这张图给我的疑问太多太多 是不是回答的数量越多,粉丝越多呢? 是不是获得感谢越多,粉丝越多呢? 是不是文章写得越多,粉丝越多呢? … 带着这些疑问,我做了如下这张图,根据分析结果,上面这几个疑问的答案就不言而喻了

并不是回答和文章次数越多,粉丝就越多,这也提醒大家,产出高质量的答案和文章,比高数量的答案和文章更有价值,更能得到别人的关注,多没用,要好才行。

有意思的专业

谈到写文章,我就想看看这些平常喜欢写作的同学都是学的什么专业

诸多默默奉献文章的高尚之士,都选择隐藏专业,在可分析的维度上,软件工程的同学摘得桂冠。中间这个“修地球专业”的文章我猜想是同一个人的贡献,因为这个专业名字除了他,应该没人想得出来233333 举一反三,我又得到了以下这张分析图,看来付出和回报是成正比的,你付出的越多,得到感谢就越多,这个世界还是很公平很美好的。差不多有200万的用户关注了“经济学”专业的同学,看来在比谁钱多的时代,经济方面文章和知识是个值得补充和提高的,大部分人在这块有极大的需求…在计算机科学专业方面的回答比肩软件工程专业,原来程序员哥哥除了不喜欢洗头,还是有很多优点的,比喻“乐于助人”。

那些经常提问的同学都来自哪个行业领域

还记得开篇的时候让大家思考的那个问题吗,如果你还没来得及思考,你现在可以再回头看一下~

在“互联网”行业,获得感谢接近13M,获得了900k的回答… 现在我们来看看开篇中的那个问题

上面的分析我们清楚的得到,用户普遍来自北京上海;而这张图可以看出,知乎上的用户在互联网这块的产出和关注度非常高,那就很好解释了:这群来自上海和北京的知乎用户,由于上海和北京互联网发展最快最发达,导致他们普遍比较关注互联网这一块。互联网之都:北上广深,(后面发展较好较快的还有杭州、南京、成都、武汉等等)关注和从事互联网的几乎都在这个四个城市,那么前后这两个看似没有任何关联不同维度的数据,恰巧有着天衣无缝的吻合。

开始我本来想直接查看个用户的职位性质来直接说明这个,但是我觉得单纯以一个在“注册”和“完善资料”步骤中填写的一个职位来说明这个有点牵强和草率,所以后面我换了一种思维,我想从用户关注的点,以及知乎上面的问题和回答所呈现的数据反推“所在的地域决定了大的环境,环境影响人关注的行业和领域”这一点,这样也显得更加严谨和科学。

下面是用户职位的分析(去除空值null后的)

其实职位不用分析也知道是这个情况。其中“创始人、合伙人、联合创始人”等都可以当作“创始人”;“产品经理、PM,产品,产品设计师”等都可以归纳为“产品经理”,“创始人”和“产品经理”这两个职位和“互联网”这三个字凝固得非常紧,而且不是这个行业的工作人员高度关注这个行业貌似也说不过去,去问或者去回答这块的问题就更扯了…

首次发言的潜在寓意是什么

仔细看上面数据 excel 截图的同学应该发现了,其中有个字段是”first_answer”,这个字段很有用

这是爬取的用户当中,首次回答的用户数量在以年为维度上的走势,(很多用户的 first_answer 我不知道为什么没有爬到~)首次回答和什么有关系?当然是注册时间啊,任何一个产品在用户首次注册的时候,新鲜感和活跃动力是最强的,如果在开始注册之际这个用户就没有参与平台的互动,我们大可以断定这个用户已经沉淀或流失。我们假设知乎上面的用户在注册的时候就开始去回答别人的问题(可能有一两天甚至一两周的时间差,但是在以年为维度,可以忽略),那么 first_answer 可以转换为注册时间,而注册时间可以反观一个平台的推广力度和运营力度,那么有了这个思路,我们再看上面的图

  • 从10年到11年,几乎垂直上升,说明在这个时间段,有大量的用户注册。事实是,知乎是10年末期开放邀请注册的,那么此期间用户剧增,理所当然
  • 从11年到12年,有下降,说明在产品形成初期,有一定的用户基数后,注册遇到了瓶颈,在知乎社区活跃的几乎都是老用户,所以没有新用户,不存在首次回答,于是,出现了下降
  • 从12年到14年,再次出现峰值,说明又有大批用户注册,去翻知乎的发展史可以看到,这个时间段,知乎取消以往的邀请注册,开放公众注册,那自然而然会出现用户暴增了
  • 之后的几年都是下降,如果读者是互联网从业或者关注这块的信息,你应该已经想到这是产品的用户瓶颈到了,一个平台的用户天花板只有这么高,当没有新用户注册并且参与活跃,first_answer 这个字段就没有意义了,所以到了16年,首次回答的用户非常低,说明,这个平台的新用户增长低,甚至没有
  • 这是从 first_answer 得出的分析,那么你能根据 last_answer 得出什么结论呢?

总结

有时候从数据分析去反推事实很有意思,这大概也是数据产品最迷人的地方吧。以后的一段时间,我将爬拉钩、爬新浪、爬大众点评、爬物流等一系列平台的数据,来和大家一起分享数据产品经理的乐趣和日常,感兴趣的朋友,欢迎来我博客做客。

本文分享自微信公众号 - 大数据杂谈(BigData07)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2018-04-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • PHP爬虫源码:百万级别知乎用户数据爬取与分析

    代码托管地址: https://github.com/HectorHu/zhihuSpider 这次抓取了110万的用户数据,数据分析结果如下: ? 开发前...

    机器学习AI算法工程
  • 300万知乎用户数据如何大规模爬取?如何做数据分析?

    很早就有采集知乎用户数据的想法,要实现这个想法,需要写一个网络爬虫(Web Spider)。因为在学习 python,正好 python 写爬虫也是极好的选择,...

    机器学习AI算法工程
  • 知乎320万用户的信息分析与数据可视化

    art 1: 动机 作为一个知乎的重度用户,我深深的被知乎社区的高素质群体所吸引,这也是我在微信朋友圈、新浪微博、baidutieba等社区见不到的东西。那么为...

    机器学习AI算法工程
  • 工具 | 知乎320万用户的信息分析与数据可视化

    art 1: 动机 作为一个知乎的重度用户,我深深的被知乎社区的高素质群体所吸引,这也是我在微信朋友圈、新浪微博、baidutieba等社区见不到的东西。那么为...

    小莹莹
  • 我用Java+Redis+ES+Kibana技术对数百万知乎用户进行了数据分析,得到了这些…

    上班的时候,自己手头的事情处理完了,我除了在掘金摸鱼,就是在知乎逛贴。在我的认知中,知乎是一个高质量论坛,基本上各种“疑难杂症”都能在上面找到相应的专业性回答。...

    全栈程序员站长
  • 【数说】从知乎320万用户爬取的信息分析与数据可视化

    art 1: 动机 作为一个知乎的重度用户,我深深的被知乎社区的高素质群体所吸引,这也是我在微信朋友圈、新浪微博、baidutieba等社区见不到的东西。那么为...

    钱塘数据
  • Apriori算法实例——322万知乎用户的关注话题关联分析

    ? 用以前爬的知乎用户行为数据,跑了一下Apriori算法,发现了一些有意思的关联规则。以下是简略的分析过程。数据采集数据怎么来的?当然不是知乎给的,是爬虫来...

    小莹莹
  • 用 Python 分析 YouTube 百万条数据

    一份执着✘
  • Hadoop数据分析平台实战——260用户数据ETL离线数据分析平台实战——260用户数据ETL

    离线数据分析平台实战——260用户数据ETL ETL目标 解析我们收集的日志数据,将解析后的数据保存到hbase中。 这里选择hbase来存储数据的主要原因就...

    Albert陈凯
  • 爬取知乎60万用户信息之后的简单分析

    使用 Java+Elasticsearch+Kibana 爬取了知乎 60 万用户数据,做了简单的可视化分析。 ---- 项目源码 GitHub - webpo...

    前朝楚水
  • Hadoop数据分析平台实战——280新增用户和总用户分析Hadoop离线数据分析平台实战——280新增用户和总用户分析

    Hadoop离线数据分析平台实战——280新增用户和总用户分析 项目进度 模块名称 完成情况 用户基本信息分析(MR)� 未完成 浏览器信息分...

    Albert陈凯
  • 动手实战 | 用户行为数据分析

    在互联网普及上升、网络零售发展驱动下,电商行业发展迅猛,用户规模持续增长。在此背景下,对用户的行为分析已经不是人力所能解决的。利用数据挖掘,机器学习的方式分析行...

    VachelHu
  • 【QQ空间大数据】爬取3000万用户,玩转大数据分析

    作者:Freebuf QQ空间就像是互联网上的城乡结合部,兼具博客论坛时代的土气和微博微信时代的洋气,拥有让写字楼里的薇薇安、杰西卡、莱斯利一秒变回“葬爱家族”...

    钱塘数据
  • Hadoop离线数据分析平台实战——290活跃用户分析Hadoop离线数据分析平台实战——290活跃用户分析

    Hadoop离线数据分析平台实战——290活跃用户分析 项目进度 模块名称 完成情况 用户基本信息分析(MR)� 未完成 浏览器信息分析(MR...

    Albert陈凯
  • 数据分析 | Numpy实战(三) - 分析各类用户占比

    观察上次的数据,数据中有的数据有会员与非会员两种用户类别。 这次我们主要分析一下两种类别用户在数据中占比。

    咸鱼学Python
  • 【数据分析】大数据之 “用户行为分析”

    这几年,几家电商的价格战打得不亦乐乎,继去年的 “双 11 大促” 和 “6·18 狂欢节” 之后,电商之间以价格为主要诉求的大规模促销层出不穷,几乎要把所有能...

    陆勤_数据人网
  • TiDB 在知乎万亿量级业务数据下的实践和挑战

    本次分享首先将从宏观的角度介绍知乎已读服务的业务场景中的挑战、架构设计思路,然后将从微观的角度介绍其中的关键组件的实现,最后分享在整个过程中 TiDB 帮助我们...

    PingCAP
  • 爬取QQ空间3000万用户,玩玩大数据分析

    一位程序猿使用C#写的一个QQ空间蜘蛛网爬虫程序。程序断断续续的运行了两周,总共爬了3000万QQ数据,这些大数据背后隐藏了哪些信息?做大数据分析的同学收好,不...

    华章科技
  • 爬取QQ空间3000万用户,玩玩大数据分析

    这是我近期使用C#写的一个QQ空间蜘蛛网爬虫程序。程序断断续续的运行了两周,目前总共爬了3000万QQ数据,其中有300万包含用户(QQ号,昵称,空间名称,头像...

    FB客服

扫码关注云+社区

领取腾讯云代金券