正在研究机器学习?我们帮你准备了27个小抄…

本文转自网络,如涉及侵权请及时联系我们

机器学习(Machine Learning)有很多方面,当我开始研究学习它时,我发现了各种各样的“小抄”,它们简明地列出了给定主题的关键知识点。最终,我汇集了超过 20 篇的机器学习相关的小抄,其中一些我经常会翻阅,而另一些我也获益匪浅。这篇文章里面包含了我在网上找到的 27 个小抄,如果你发现我有所遗漏的话,请告诉我。

机器学习领域的变化是日新月异的,我想这些可能很快就会过时,但是至少在目前,它们还是很潮的。

机器学习

这里有一些有用的流程图和机器学习算法表,我只包括了我所发现的最全面的几个。

神经网络架构

来源: http://www.asimovinstitute.org/neural-network-zoo/

神经网络公园

微软 Azure 算法流程图

来源: https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-cheat-sheet

用于微软 Azure 机器学习工作室的机器学习算法

SAS 算法流程图

来源: http://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

SAS:我应该使用哪个机器学习算法?

算法总结

来源: http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/

机器学习算法指引

来源: http://thinkbigdata.in/best-known-machine-learning-algorithms-infographic/

已知的机器学习算法哪个最好?

算法优劣

来源: https://blog.dataiku.com/machine-learning-explained-algorithms-are-your-friend

Python

自然而然,也有许多在线资源是针对 Python 的,这一节中,我仅包括了我所见过的最好的那些小抄。

算法

来源: https://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/

Python 基础

来源: http://datasciencefree.com/python.pdf

来源: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics#gs.0x1rxEA

Numpy

来源: https://www.dataquest.io/blog/numpy-cheat-sheet/

来源: http://datasciencefree.com/numpy.pdf

来源: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.Nw3V6CE

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/numpy/numpy.ipynb

Pandas

来源: http://datasciencefree.com/pandas.pdf

来源: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.S4P4T=U

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/pandas/pandas.ipynb

Matplotlib

来源: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet

来源: https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb

Scikit Learn

来源: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet#gs.fZ2A1Jk

来源: http://peekaboo-vision.blogspot.de/2013/01/machine-learning-cheat-sheet-for-scikit.html

来源: https://github.com/rcompton/ml_cheat_sheet/blob/master/supervised_learning.ipynb

Tensorflow

来源: https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb

Pytorch

来源: https://github.com/bfortuner/pytorch-cheatsheet

数学

如果你希望了解机器学习,那你就需要彻底地理解统计学(特别是概率)、线性代数和一些微积分。我在本科时辅修了数学,但是我确实需要复习一下了。这些小抄提供了机器学习算法背后你所需要了解的大部分数学知识。

概率

来源: http://www.wzchen.com/s/probability_cheatsheet.pdf

概率小抄 2.0

线性代数

来源: https://minireference.com/static/tutorials/linear_algebra_in_4_pages.pdf

四页内解释线性代数

统计学

来源: http://web.mit.edu/~csvoss/Public/usabo/stats_handout.pdf

统计学小抄

微积分

来源: http://tutorial.math.lamar.edu/getfile.aspx?file=B,41,N

微积分小抄

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2018-04-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CSDN技术头条

2017年深度学习十大趋势预测

本文作者曾经多次预测了技术发展的趋势,最近的一次预测是“2011年软件发展的趋势与预测”。10项预言中,准确地命中了6项,比如JavaScript VM、NoS...

20580
来自专栏专知

【深入浅出】一篇超棒的机器学习入门文章

【链接】http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中,我将对机器学习做个概要的介绍。本文的...

37990
来自专栏数据派THU

干货 | 纽约大学陈溪: AlphaGo Zero技术演进的必然性(附PPT)

本讲座选自纽约大学助理教授陈溪近日在2018第二届杉数科技AI大师圆桌会上所做的题为《 AlphaGo Zero技术演进的必然性-机器学习与决策的有机结合》的演...

15520
来自专栏AI科技评论

只训练一次数据就能识别出物体,谷歌全新 AI 算法“单次学习”

近日,谷歌 DeepMind 团队发现了一种新的方式对深度学习算法进行调整,新算法可以只通过一个例子就能识别出图像中的物体,该算法被称为“单次学习”。 ? 一套...

39950
来自专栏人工智能头条

机器学习、神经网络在控制科学中的应用前景探讨

33850
来自专栏AI科技评论

独家揭秘| 数据挖掘、机器学习和深度学习之间的区别

导读:机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自...

39250
来自专栏华章科技

LeCun:智能的精华在于预测能力!“预测学习”了解一下!

导读:在NIPS 2016大会上,著名研究者LeCun提出了预测学习(predictive learning)概念。在他的讲稿中,将机器学习比喻为“蛋糕”:

12830
来自专栏AI研习社

深度学习如何影响运筹学?

本文为知乎答主,运筹学博士郝井华在「深度学习如何影响运筹学?」问题下的答案,AI 研习社获其授权转载。 这个问题比较前沿一些,原来看起来相关性不那么强的技术领域...

32940
来自专栏腾讯技术工程官方号的专栏

艺术滤镜视频来了!腾讯人工智能首创深度网络学习视频

腾讯18周年庆当天,腾讯人工智能实验室(AI Lab)首次发布深度网络学习视频案例——《青春无畏,冲动不止》庆生视频的艺术滤镜版本 今年风靡业界的Prisma以...

24270
来自专栏AI科技评论

学界 | 专家标注的数据少就少吧,普通人标的数据现在也可以用了

AI 科技评论按:对于缺乏高质量标注数据的专业应用,除了继续花钱标数据之外,常用方法似乎也就只有 ImageNet 预训练 + 任务专用数据 fine-tune...

11120

扫码关注云+社区

领取腾讯云代金券