前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【无监督学习】DBSCAN聚类算法原理介绍,以及代码实现

【无监督学习】DBSCAN聚类算法原理介绍,以及代码实现

作者头像
IT派
发布2018-07-30 16:17:18
9.1K0
发布2018-07-30 16:17:18
举报
文章被收录于专栏:IT派IT派IT派

前言:无监督学习想快一点复习完,就转入有监督学习

聚类算法主要包括哪些算法?

主要包括:K-means、DBSCAN、Density Peaks聚类(局部密度聚类)、层次聚类、谱聚类。

若按照聚类的方式可划分成三类:第一类是类似于K-means、DBSCAN、Density Peaks聚类(局部密度聚类)的依据密度的聚类方式; 第二种是类似于层次聚类的依据树状结构的聚类方式; 第三种是类似于谱聚类的依据图谱结构的聚类方式。

什么是无监督学习?

  • 无监督学习也是相对于有监督学习来说的,因为现实中遇到的大部分数据都是未标记的样本,要想通过有监督的学习就需要事先人为标注好样本标签,这个成本消耗、过程用时都很巨大,所以无监督学习就是使用无标签的样本找寻数据规律的一种方法
  • 聚类算法就归属于机器学习领域下的无监督学习方法。

无监督学习的目的是什么呢?

  • 可以从庞大的样本集合中选出一些具有代表性的样本子集加以标注,再用于有监督学习
  • 可以从无类别信息情况下,寻找表达样本集具有的特征

分类和聚类的区别是什么呢?

  • 对于分类来说,在给定一个数据集,我们是事先已知这个数据集是有多少个种类的。比如一个班级要进行性别分类,我们就下意识清楚分为“男生”、“女生”两个类;该班又转入一个同学A,“男ta”就被分入“男生”类;
  • 而对于聚类来说,给定一个数据集,我们初始并不知道这个数据集包含多少类,我们需要做的就是将该数据集依照某个“指标”,将相似指标的数据归纳在一起,形成不同的类;
  • 分类是一个后续的过程,已知标签数据,再将测试样本分入同标签数据集中;聚类是不知道标签,将“相似指标”的数据强行“撸”在一起,形成各个类。

一、DBSCAN聚类

定义:DBSCAN(Density-Based Spatial Clustering of Applications with Noise,具有噪声的基于密度的聚类方法)是一种基于密度的空间聚类算法。该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,DBSCAN算法将“簇”定义为密度相连的点的最大集合

1、传统的密度定义:基于中心的方法

传统的密度定义方法——事先给定半径r,数据集中点a的密度,要通过落入以点a为中心以r为半径的圆内点的计数(包括点a本身)来估计。很显然,密度是依赖于半径的。如下图所示:

2、DBSCAN中依照密度,对样本点的划分

基于以上密度的定义,我们可以将样本集中的点划分为以下三类:

  • 核心点:在半径r区域内,含有超过MinPts数目(最小数目)的点,称为核心点;
  • 边界点:在半径r区域内,点的数量小于MinPts数目,但是是核心点的直接邻居;
  • 噪声点:既不是核心点也不是边界点的点

下图可以很清楚的区分三种点:

依照上图以及三种点的定义,可以得到:噪声点是不会被聚类纳入的点,边界点与核心点组成聚类的“簇”。

3、介绍三个有趣的概念

  • 直接密度可达:在给定一个对象集合D,如果p在q的r领域内,且q是一个核心点对象,则称对象p从对象q出发时是直接密度可达的
  • 密度可达:在给定对象集合D中,如果存在一个对象链q–>e–>a–>k–>l–>p,任意相邻两个对象间都是直接密度可达的,则称对象p是对象q关于r邻域内、MinPts数目下,是密度可达的;
  • 密度相连:如果在对象集合D中存在一个对象O,使得对象p和q都是从O关于r邻域内、MinPts数目下,是密度相连的。

如下图所示:r用一个相应的半径表示,设MinPts=3,分析Q、M、P、S、O、R这5个样本点之间的关系。

根据以上概念可知:由于有标记的各点M、P、O和R的r邻域均包含3个以上的点,因此它们都是核对象;M是从P的“直接密度可达”;Q是从M的“直接密度可达”;基于上述结果,Q是从P的“密度可达”;但P从Q是无法“密度可达”(非对称的);类似的,S和R都是从O的“密度可达”;O、R都是从S的“密度相连”。

也就是说:核心点能够连通(密度可达),它们构成的以r为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇。

4、DBSCAN聚类算法原理

  1. DBSCAN通过检查数据集中每个点的r邻域来搜索簇,如果点p的r邻域包含多于MinPts个点,则创建一个以p为核心对象的簇;
  2. 然后, DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;
  3. 当没有新的带你添加到任何簇时,迭代过程结束。

DBSCAN聚类算法效果展示如下图:

5、DBSCAN聚类算法优缺点

优点:基于密度定义,可以对抗噪声,能处理任意形状和大小的簇

缺点:当簇的密度变化太大时候,聚类得到的结果会不理想;对于高维问题,密度定义也是一个比较麻烦的问题。

6、DBSCAN聚类算法

# -*- coding:utf-8 -*-
# -*- author:zzZ_CMing
# -*- 2018/04/10;15:38
# -*- python3.5

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
import matplotlib.colors

# 创建Figure
fig = plt.figure()
# 用来正常显示中文标签
matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
# 用来正常显示负号
matplotlib.rcParams['axes.unicode_minus'] = False

X1, y1 = datasets.make_circles(n_samples=5000, factor=.6,
                                      noise=.05)
X2, y2 = datasets.make_blobs(n_samples=1000, n_features=2,
                             centers=[[1.2,1.2]], cluster_std=[[.1]],random_state=9)

# 原始点的分布
ax1 = fig.add_subplot(311)
X = np.concatenate((X1, X2))
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.title(u'原始数据分布')
plt.sca(ax1)

"""
# K-means聚类
from sklearn.cluster import KMeans
ax2 = fig.add_subplot(312)
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'K-means聚类')
plt.sca(ax2)
"""

# DBSCAN聚类
from sklearn.cluster import DBSCAN
ax3 = fig.add_subplot(313)
y_pred = DBSCAN(eps = 0.1, min_samples = 10).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.title(u'DBSCAN聚类')
plt.sca(ax3)

plt.show()

效果展示:

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-04-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 IT派 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 聚类算法主要包括哪些算法?
  • 什么是无监督学习?
  • 无监督学习的目的是什么呢?
  • 分类和聚类的区别是什么呢?
  • 一、DBSCAN聚类
    • 1、传统的密度定义:基于中心的方法
      • 2、DBSCAN中依照密度,对样本点的划分
        • 3、介绍三个有趣的概念
          • 4、DBSCAN聚类算法原理
            • 5、DBSCAN聚类算法优缺点
              • 6、DBSCAN聚类算法
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档