业界 | 百度提出NCRF:深度学习癌症图像检测效率再提升

选自Baidu Research

作者:Yi Li、Wei Ping

机器之心编译

参与:李泽南、李亚洲

深度学习在医疗图像疾病检测方向上的发展很快,但目前仍面临着易出现假阳性的问题。近日,百度研究人员提出了 NCRF(神经条件随机场)方法,在提升肿瘤图像准确率的同时也减少了假阳性的出现几率。该研究的论文已被即将在 7 月举行的深度学习医疗图像大会 MIDL 2018 接收。

NCRF 项目已开源:https://github.com/baidu-research/NCRF

目前在医疗领域有很多癌症诊断方法,其中病理学活体检测被认为是最为可信的标准。然而,对病理学切片进行分析并不是一件容易的事,即使对于经验丰富的病理学家而言也是有挑战的事情。一个放大 40 倍的病理切片数字图像通常包含数十亿像素,而在这样大规模的内容里,病理学家有时需要找寻微转移、肿瘤细胞细小群体等早期癌症征兆。这些任务让审查病理切片,而不遗漏任何临床证据成为了一项非常复杂耗时的工作。

随着人工智能的发展,人们已经提出了各种基于深度学习的算法来帮助病理学家有效审查这些切片,并检测癌症转移。由于切片的原始数字图像非常大,大多数算法目前会将图片切割成大量小图片 (patch) 进行处理,如 256×256 像素尺寸的图片——然后训练并使用深度卷积神经网络来对肿瘤细胞和正常细胞进行分类。然而,这种方法有时难以在不知晓周围内容的情况下预测小图片中是否存在肿瘤,特别是在肿瘤/正常区域的边界上,经常会出现假阳性。

图 2 展示了这类方法的困难:

百度研究人员近日提出了一个新的深度学习算法,该方法不仅分析单个小图片,也将图片四周临近的网格一并输入进行肿瘤细胞分析。就像放大图片,看到更大区域从而做出更有置信度的判断一样。在这里,相邻切片之间的空间相关性通过特定类型的概率图形模型(条件随机场)进行建模。整个深度学习框架可以在 GPU 上进行端到端的训练,无需任何后处理过程。

图 3 展示了该算法的架构:

百度研究人员称,通过考虑相邻图片之间的相关性,新算法发生的误报次数少了很多。图 4 展示了在示例肿瘤图片上,新算法与不考虑临近图片的算法之间的预测效果比较。我们可以看到,除了基本的真肿瘤区域以外,新算法的假阳性区域相较基准算法要少很多。

图 4.(a) 原始的完整切片图像;(b) 病理学家注释的图像,白色区域表示癌症转移;(c) 通过之前的算法预测癌症区域,不考虑临近图像块;(d) 通过百度的算法预测癌症区域。

在 Camelyon16 挑战赛测试集上,百度的算法在癌症定位上的得分(FROC)为 0.8096,超越了专业的病理学家(0.7240)和前一个 Camelyon16 挑战赛冠军(0.8074)。此外,百度还在 Github 上开源了此算法,希望能够促进病理分析领域的 AI 研究。

这种全新的癌症检测算法有潜力改进病理切片镜检的效率与准确率。这能使得病理学家更加关注算法重点强调的癌症区域,而不是检查整个切片。不过,要综合评估该算法,还需要在更大数据集上做进一步的临床研究。

更多信息可查看以下论文:

注:在数字病理切片中,在 40 倍的放大下一个像素大概长 0.243 微米。微转移一般定义为一组癌细胞最大直径超过 200 微米,也就是大概 823 像素。

论文:Cancer Metastasis Detection With Neural Conditional Random Field

论文链接:https://openreview.net/forum?id=S1aY66iiM

摘要:乳腺癌诊断通常要求通过全切片数字化图像(WSI)对淋巴结癌细胞转移进行准确检测。近期深度卷积神经网络的发展使得医疗影像分析取得了极大成功,尤其是在计算病理组织学方面。由于 WSI 非常大,大部分方法都将整张图像切分成很多小的图像块,再对每个图像块分别进行分类。但是,相邻图像块通常具备空间关联,忽视此类关联可能会导致预测结果不一致。本论文提出一种神经条件随机场(neural conditional random field,NCRF)深度学习框架,来检测 WSI 中的癌细胞转移。NCRF 通过一个直接位于 CNN 特征提取器上方的全连接 CRF,来考虑相邻图像块之间的空间关联。整个深度网络可以使用标准反向传播算法,以最小算力进行端到端的训练。CNN 特征提取器也可以从利用 CRF 考虑空间关联中受益。与不考虑空间关联的基线方法相比,NCRF 框架可获取更高视觉质量的图像块预测概率图。我们还展示了在 Camelyon16 数据集上该方法在癌细胞转移检测方面优于基线方法,在测试集上取得了 0.8096 的平均 FROC 分数。

原文链接:http://research.baidu.com/Blog/index-view?id=104

本文为机器之心编译,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2018-06-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

「无中生有」计算机视觉探奇

计算机视觉 (Computer Vision, CV) 是一门研究如何使机器“看”的科学。1963年来自MIT的Larry Roberts发表的该领域第一篇博士...

3356
来自专栏人工智能LeadAI

GoogLeNet的心路历程(一)

这一段时间撸了几篇论文,当我撸到GoogLeNet系列论文的时候,真是脑洞大开!GoogLeNet绝对可以称为已公开神经网络的复杂度之王!每当我看到它那错综复杂...

4089
来自专栏量子位

“花书”的佐餐,你的线性代数笔记

最近,巴黎高等师范学院的博士生Hadrien Jean,整理了关于深度学习“花书”的一套笔记,还有幸在推特上被Ian Goodfellow老师翻了牌。

1042
来自专栏企鹅号快讯

【MachineLN之三要素】

开篇废话: 机器学习解决的问题和李航老师统计学习方法所描述的统计学问题不谋而合。李航定义为统计学习三要素:方法=模型+策略+算法。这不光是统计学习必经之路,这也...

2087
来自专栏AI科技评论

媲美人类有何不可?深度解读微软新AI翻译系统四大秘技

AI 科技评论按:3 月 15 日的文章《机器翻译新突破,微软中英新闻翻译达人类水平》中,我们介绍了微软亚洲研究院与雷德蒙研究院共同研发的新的机器翻译系统,微软...

3758
来自专栏专知

【CVPR2018最佳论文重磅出炉】斯坦福伯克利折桂,何恺明获TPAMI年轻研究员奖

【导读】美国当地时间6 月 18 号,CVPR 2018 在犹他州盐湖城开幕。作为计算机视觉领域的全球顶会,吸引了国内外众多学界、产业界的研究人员参与。CVPR...

1292
来自专栏AI科技评论

陈陟原:数据降维与可视化| AI 研习社第 53 期猿桌会

相信大多数人都已经接触过数据可视化——Excel 随便画一张表就是了。众所周知,二维数据可视化很容易,条形图、饼状图等等,我们在初中就已经学过了。那么三维数据呢...

1302
来自专栏美团技术团队

【AI in 美团】深度学习在文本领域的应用

AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技...

2532
来自专栏新智元

中国团队两冠一亚包揽KDD CUP三项大奖,作者亲述技术细节

【新智元导读】近日,有数据挖掘领域“奥运会”之称的KDD Cup 2018比赛结果出炉。今年的主题为空气质量预测,中国团队Getmax包揽三项大奖,获得两项第一...

942
来自专栏机器之心

ICLR 2018 | CMU提出新型智能体定位方法:「主动神经定位器」

41611

扫码关注云+社区

领取腾讯云代金券