学界 | 担心面部识别泄露隐私?多伦多大学图像「隐私过滤器」了解一下

选自neuro science news

机器之心编译

参与:李诗萌、张倩

随着面部识别系统越发成熟,个人隐私问题也引发了越来越多的担忧。多伦多大学的研究人员利用对抗式训练的深度学习技术开发了一种新的算法,这种算法可以动态地扰乱面部识别系统,有助于保护用户隐私。研究者表示,他们的系统可以将可检测的面部比例从原先的近百分之百降低到 0.5%。

每当用户将照片或视频上传到社交媒体平台时,这些平台的面部识别系统都会对用户有一定的了解。这些算法会提取包括用户的身份、所在地以及认识的人在内的数据,而且还在不断提升。

随着对社交网络隐私和数据安全的担忧不断增加,Parham Arabia 教授和研究生 Avishek Bose 带领多伦多大学工程部的研究人员创建了一种可以动态扰乱面部识别系统的算法。

Aarabi 认为,「当面部识别系统做得越来越好时,个人隐私就成为了一个真正的问题。这种反面部识别的方法可以有力地保护个人隐私。」

他们的算法利用了所谓对抗式训练的深度学习技术,这种方法使两种人工智能算法相互对抗。Aarabi 和 Bose 设计的方法中有两个神经网络:第一个用来进行面部识别,第二个用来扰乱第一个做出的面部识别任务。这两个网络不断对抗,也不断地相互学习,从而开始了一场持续的 AI 竞赛。

这场竞赛的结果是建立了一个与 Instagram 有些相似的过滤器,这种过滤器可以应用在照片上从而达到保护隐私的目的。该算法改变了图像中的特定像素,做出了一些人眼几乎察觉不到的变化。Bose 说,「扰乱性 AI 可以『攻击』面部识别神经网络正在识别的东西。例如,如果识别性 AI 正在识别眼睛的角落,扰乱性 AI 就会对这个部位做出几乎无法察觉的调整。它在照片中创造了一些非常微妙的干扰,但是却足以欺骗系统。」Aarabi 和 Bose 在 300-W 面部数据集上测试了他们的系统,300-W 是一个包含 600 多张面部图像的产业标准库,这些面部图像来自不同的种族,照明条件及环境也有所不同。研究者表示,他们的系统可以将可检测的面部比例从原先的近百分之百降低到 0.5%。

该项目的主要作者 Bose 说:「这个项目的重点在于训练两个相互对抗的神经网络——一个用来创建越来越强大的面部识别系统,另一个用来创建更强大的、用来禁用面部检测系统的工具。」该团队的研究将于今年夏天在 2018 年 IEEE 国际多媒体信号处理研讨会(International Workshop on Multimedia Signal Processing)上发布。

多伦多大学工程部的研究人员设计了一个用于扰乱面部识别算法的「隐私过滤器」。该系统依赖于两个基于 AI 创建的算法:一个用于连续进行面部识别,另一个用于对第一个进行扰乱。

除了禁用面部识别外,这项新技术还可以扰乱基于图像的搜索、特征识别、情感和种族评估以及其他自动提取面部属性的功能。

接下来,该团队希望隐私过滤器可以以 app 或网页的形式为大众所用。

Aarabi 说:「十年前,这些算法还需要人为定义,但是现在神经网络已经可以自行学习了——除了训练数据,无需提供其他东西。最终,它们可以做出一些真正了不起的东西。在这个领域中这是一段非常有趣的时光,而且这个领域还有很大的潜力有待发掘。」

论文:Adversarial Attacks on Face Detectors using Neural Net based Constrained Optimization

论文链接:https://joeybose.github.io/assets/adversarial-attacks-face.pdf

摘要:本文所述算法通过对抗式攻击在输入中添加几乎无法察觉的扰乱,从而达到使机器学习模型对输入进行错误分类的目的。尽管在图像分类模型中已经提出了许多不同的对抗式攻击策略,但一直难以打破目标检测的途径。本文作者提出的新策略可以通过使用对抗式生成器网络解决约束优化问题,制作对抗的例子。该方法快速而且可拓展,只需要通过训练好的生成器网络的正向通路制作对抗性样例。与许多攻击策略不同的是,本文所述的相同的训练后的生成器可以攻击新图像但不会明显优化它们。文中用 300-W 面部数据集对训练好的 Faster R-CNN 面部识别器结果进行了评估,本文所述方法成功将面部检测数降低到原始面部检测数的 0.5%。同样是用 300-W 数据集,我们还在不同的实验中证明了我们的攻击对基于 JPEG 压缩图的防御的鲁棒性,在 75% 的压缩等级的情况下,我们的攻击算法的有效性从 0.5%(可检测的面部比例)降低到 5.0%。

本文为机器之心编译,转载请联系本公众号获得授权。

原文发布于微信公众号 - 机器之心(almosthuman2014)

原文发表时间:2018-06-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能算法

深度学习入门之工具综述

原文:Getting Started with Deep Learning: A REVIEW OF AVAILABLE TOOLS 作者: MATTHEW R...

36713
来自专栏AI研习社

【AI听】Hinton:反向传播要被彻底放弃了!Unity推出Machine Learning,24分钟训练ImageNet……

主播 | 吴璇 选题 | 徐普 程炜 Heo 本周关键词 反向传播|Machine Learning Agents ImageNet|信息瓶颈 NO/1 Ge...

3847
来自专栏量子位

想成为机器学习工程师?这份自学指南你值得收藏

问耕 编译整理 量子位 出品 | 公众号 QbitAI 这篇文章的作者为Andrey Nikishaev,他既是一个软件开发者,也是一个创业者。 ? 如何成长为...

4955
来自专栏媒矿工厂

Facebook VR方案总结(三)

全景视频,也称360°视频,是一种新一代的视频显示技术,用户置于球形区域中央,可以任意在拍摄角度周围360度地观看动态视频,而不受时间、空间和地...

4615
来自专栏量子位

推荐系统中的冷启动和探索利用问题探讨

作者:文辉 | 达观数据 量子位 已获授权编辑发布 1.前言 互联网技术和大数据技术的迅猛发展正在时刻改变我们的生活,视频网站、资讯app、电商网站对于推荐系统...

8347
来自专栏贺嘉的专栏

腾讯云总监手把手教你,如何成为 AI 工程师?

虽然现在 “智能”的取得建立在大量的人工前期工作基础上,缺乏无监督学习,但是人工智能方兴未艾,如何入门成为高薪抢手的AI工程师值得学习,腾讯云总监分享了如何入行...

10K5
来自专栏目标检测和深度学习

逆天!MIT新“像素发声”系统,完美分离声与画(附视频)

新智元报道 来源:MIT CSAIL 编辑:小潘、克雷格 【新智元导读】麻省理工学院(MIT)的计算机科学与人工智能实验室(CSAIL)最近研发出一种名...

2995
来自专栏机器之心

线性代数与张量?这本开放书籍帮你扫清通往ML的数学绊脚石

项目地址:https://web.stanford.edu/~boyd/vmls/

952
来自专栏新智元

Facebook 交互式神经网络可视化系统,应对海量数据和复杂模型

【新智元导读】神经网络模型的可视化是解决其黑箱问题的一个解决方案,但用于神经网络可视化的大多数工具集中在图像数据集上,这激发了 Facebook 和 Georg...

3916
来自专栏AI科技大本营的专栏

CCAI 2017 | 机器学习先驱Thomas Dietterich:如何构建强健的人工智能—原因及方式

俄勒冈州立大学教授、AAAI 前主席 Thomas G. Dietterich 文/CSDN周翔 7 月22 - 23 日,由中国人工智能学会、阿里巴巴集团 &...

3757

扫码关注云+社区

领取腾讯云代金券