斯坦福CS231n - CNN for Visual Recognition(1)-lecture2图像分类、最近邻分类器

本节主要简单介绍了图像分类和流程,讲解了最近邻分类器的原理以及超参数的的调优与交叉验证

图像分类

  顾名思义,就是给定一个图像,判断出它属于哪一个类。通常通过带有标签的数据作为训练集用各种方法进行训练, 然后在测试集上进行测试,预测出最可能的类别(标签)。

  图像分类面临的困难:视角变化、大小变化、形变、遮挡、光照条件、背景干扰、类内差异等

  图像分类流程:输入->学习->评价


最近邻分类器

  NN分类器的原理非常简单。针对图像分类来说,就是将给定的图像与带标签的图像逐个像素进行比较,选取距离最小图像的标签作为给定图像类别的预测,这里可以计算L1距离和L2距离。   L1距离公式(绝对值相加) : d1(I1,I2)=∑p|Ip1−Ip2| d_1(I_1,I_2)= \sum\limits_{p} |I_1^p-I_2^p|

  L2距离公式(欧氏距离): d2(I1,I2)=∑p(Ip1−Ip2)2−−−−−−−−−−√ d_2(I_1,I_2)= \sqrt{\sum\limits_{p} (I_1^p-I_2^p)^2}

1. K近邻分类器

  顾名思义,就是选取距离最小的K个图像,将数量最多的标签作为给定图像类别的预测。

KNN优缺点 (1)优点:   算法简单,易于理解,易于实现,不需要参数估计,不需要事先训练。 (2)缺点:   测试需要计算量特别大(实际中关注测试效率远远大于训练效率),训练样本必须存储在本地,内存开销也特别大。 实际中在图像分类中很少使用KNN,因为KNN实质是比较像素的差异,导致图像更多的是按照背景和颜色被分类。

2. 用于超参数调优的验证集

  当我们在设计机器学习算法的时候,除了最终预测的时候使用测试集,其他时候都不能使用(很容易造成过拟合)。我们可以在训练集中分出一部分(50%~90%)作为验证集,在验证集上进行超参数调优。一旦找到最优的超参数,就让算法以该参数在测试集跑且只跑一次,并根据测试结果评价算法。

3. 交叉验证

  当训练集数量较少时,我们一般使用交叉验证的方式(一般分为3、5、10份),比如:将训练集平均分成5份,其中4份用来训练,1份用来验证。然后我们循环着取其中4份来训练,其中1份来验证,最后取所有5次验证结果的平均值作为算法验证结果。


参考资料

链接:http://cs231n.github.io/classification/ 链接:https://zhuanlan.zhihu.com/p/20894041?refer=intelligentunit https://zhuanlan.zhihu.com/p/20900216?refer=intelligentunit 链接:http://blog.csdn.net/han_xiaoyang/article/details/49949535

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习原理

梯度下降算法

最优化算法的一种,解决无约束优化问题,用递归来逼近最小偏差的模型。 关于梯度的概念可参见以前的文章: 从方向导数到梯度 梯度下降法迭代公式为: ...

337110
来自专栏机器学习、深度学习

跟踪算法基准--Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking

Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tr...

29360
来自专栏决胜机器学习

卷积神经网络(四) ——目标检测与YOLO算法

卷积神经网络(四) ——目标检测与YOLO算法 (原创内容,转载请注明来源,谢谢) 一、概述 目标检测,主要目的是在图片中,分类确认是否有需要的物体,如果有则标...

1.6K60
来自专栏新智元

谷歌官方:反向传播算法图解

【新智元导读】反向传播算法(BP算法)是目前用来训练人工神经网络的最常用且最有效的算法。作为谷歌机器学习速成课程的配套材料,谷歌推出一个演示网站,直观地介绍了反...

16400
来自专栏人人都是极客

机器学习三要素之数据、模型、算法

我们都知道,机器学习需要大量的数据来训练模型,尤其是训练神经网络。在进行机器学习时,数据集一般会被划分为训练集和测试集,很多时候还会划分出验证集。

76420
来自专栏深度学习计算机视觉

BP神经网络总结笔记

概念背景(来自百度百科) BP神经网络的代表者是D.Rumelhart和J.McCelland,“反向传播(backpropagation)”一词的使用出现在1...

28930
来自专栏人工智能LeadAI

VGG和GoogLeNet inception

01 介绍 googlenet和vggnet这两个模型是在AlexNet后人工神经网络方面研究的又一里程碑,也是许多论文和博客中用来和提出的新方法进行对比的b...

396140
来自专栏人工智能

课后作业(二):如何用一个只有一层隐藏层的神经网络分类Planar data

来源:sandipanweb 编译:Bot 编者按:之前,论智曾在TOP 10:初学者需要掌握的10大机器学习(ML)算法介绍了一些基础算法及其思路,为了与该帖...

19560
来自专栏算法channel

深度学习|卷积神经网络(CNN)介绍(前篇)

01 — 回顾 以上推送了神经网络相关的介绍性内容和相关的基础理论,包括: 神经网络的基本结构:输入层,隐含层,输出层; 批随机梯度下降算法(mini-batc...

55890
来自专栏SIGAI学习与实践平台

【免费线上实践】动手训练模型系列:梯度消失

本模型实现对512*512图像的像素二分类问题;红色或蓝色的样本点(每个样本包含坐标(x,y)值)坐落在对应颜色的区域内则样本正确分类,反之分类错误。 loss...

10640

扫码关注云+社区

领取腾讯云代金券