浅谈Java中的hashcode方法

  哈希表这个数据结构想必大多数人都不陌生,而且在很多地方都会利用到hash表来提高查找效率。在Java的Object类中有一个方法:

public native int hashCode();

  根据这个方法的声明可知,该方法返回一个int类型的数值,并且是本地方法,因此在Object类中并没有给出具体的实现。

  为何Object类需要这样一个方法?它有什么作用呢?今天我们就来具体探讨一下hashCode方法。

一.hashCode方法的作用

  对于包含容器类型的程序设计语言来说,基本上都会涉及到hashCode。在Java中也一样,hashCode方法的主要作用是为了配合基于散列的集合一起正常运行,这样的散列集合包括HashSet、HashMap以及HashTable。

  为什么这么说呢?考虑一种情况,当向集合中插入对象时,如何判别在集合中是否已经存在该对象了?(注意:集合中不允许重复的元素存在)

  也许大多数人都会想到调用equals方法来逐个进行比较,这个方法确实可行。但是如果集合中已经存在一万条数据或者更多的数据,如果采用equals方法去逐一比较,效率必然是一个问题。此时hashCode方法的作用就体现出来了,当集合要添加新的对象时,先调用这个对象的hashCode方法,得到对应的hashcode值,实际上在HashMap的具体实现中会用一个table保存已经存进去的对象的hashcode值,如果table中没有该hashcode值,它就可以直接存进去,不用再进行任何比较了;如果存在该hashcode值, 就调用它的equals方法与新元素进行比较,相同的话就不存了,不相同就散列其它的地址,所以这里存在一个冲突解决的问题,这样一来实际调用equals方法的次数就大大降低了,说通俗一点:Java中的hashCode方法就是根据一定的规则将与对象相关的信息(比如对象的存储地址,对象的字段等)映射成一个数值,这个数值称作为散列值。下面这段代码是java.util.HashMap的中put方法的具体实现:

public V put(K key, V value) {        if (key == null)            return putForNullKey(value);        int hash = hash(key.hashCode());        int i = indexFor(hash, table.length);        for (Entry<K,V> e = table[i]; e != null; e = e.next) {            Object k;            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {                V oldValue = e.value;                e.value = value;                e.recordAccess(this);                return oldValue;            }        }         modCount++;        addEntry(hash, key, value, i);        return null;    }

  put方法是用来向HashMap中添加新的元素,从put方法的具体实现可知,会先调用hashCode方法得到该元素的hashCode值,然后查看table中是否存在该hashCode值,如果存在则调用equals方法重新确定是否存在该元素,如果存在,则更新value值,否则将新的元素添加到HashMap中。从这里可以看出,hashCode方法的存在是为了减少equals方法的调用次数,从而提高程序效率。

  如果对于hash表这个数据结构不清楚的朋友,可以参考这两篇博文;

  http://www.cnblogs.com/jiewei915/archive/2010/08/09/1796042.html

  http://www.cnblogs.com/dolphin0520/archive/2012/09/28/2700000.html

  有些朋友误以为默认情况下,hashCode返回的就是对象的存储地址,事实上这种看法是不全面的,确实有些JVM在实现时是直接返回对象的存储地址,但是大多时候并不是这样,只能说可能存储地址有一定关联。下面是HotSpot JVM中生成hash散列值的实现:

static inline intptr_t get_next_hash(Thread * Self, oop obj) {  intptr_t value = 0 ;  if (hashCode == 0) {     // This form uses an unguarded global Park-Miller RNG,     // so it's possible for two threads to race and generate the same RNG.     // On MP system we'll have lots of RW access to a global, so the     // mechanism induces lots of coherency traffic.     value = os::random() ;  } else  if (hashCode == 1) {     // This variation has the property of being stable (idempotent)     // between STW operations.  This can be useful in some of the 1-0     // synchronization schemes.     intptr_t addrBits = intptr_t(obj) >> 3 ;     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;  } else  if (hashCode == 2) {     value = 1 ;            // for sensitivity testing  } else  if (hashCode == 3) {     value = ++GVars.hcSequence ;  } else  if (hashCode == 4) {     value = intptr_t(obj) ;  } else {     // Marsaglia's xor-shift scheme with thread-specific state     // This is probably the best overall implementation -- we'll     // likely make this the default in future releases.     unsigned t = Self->_hashStateX ;     t ^= (t << 11) ;     Self->_hashStateX = Self->_hashStateY ;     Self->_hashStateY = Self->_hashStateZ ;     Self->_hashStateZ = Self->_hashStateW ;     unsigned v = Self->_hashStateW ;     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;     Self->_hashStateW = v ;     value = v ;  }   value &= markOopDesc::hash_mask;  if (value == 0) value = 0xBAD ;  assert (value != markOopDesc::no_hash, "invariant") ;  TEVENT (hashCode: GENERATE) ;  return value;}

  该实现位于hotspot/src/share/vm/runtime/synchronizer.cpp文件下。

  因此有人会说,可以直接根据hashcode值判断两个对象是否相等吗?肯定是不可以的,因为不同的对象可能会生成相同的hashcode值。虽然不能根据hashcode值判断两个对象是否相等,但是可以直接根据hashcode值判断两个对象不等,如果两个对象的hashcode值不等,则必定是两个不同的对象。如果要判断两个对象是否真正相等,必须通过equals方法。

  也就是说对于两个对象,如果调用equals方法得到的结果为true,则两个对象的hashcode值必定相等;

  如果equals方法得到的结果为false,则两个对象的hashcode值不一定不同;

  如果两个对象的hashcode值不等,则equals方法得到的结果必定为false;

  如果两个对象的hashcode值相等,则equals方法得到的结果未知。

二.equals方法和hashCode方法

  在有些情况下,程序设计者在设计一个类的时候为需要重写equals方法,比如String类,但是千万要注意,在重写equals方法的同时,必须重写hashCode方法。为什么这么说呢?

  下面看一个例子:

package com.cxh.test1; import java.util.HashMap;import java.util.HashSet;import java.util.Set;  class People{    private String name;    private int age;         public People(String name,int age) {        this.name = name;        this.age = age;    }           public void setAge(int age){        this.age = age;    }             @Override    public boolean equals(Object obj) {        // TODO Auto-generated method stub        return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;    }} public class Main {     public static void main(String[] args) {                 People p1 = new People("Jack", 12);        System.out.println(p1.hashCode());                     HashMap<People, Integer> hashMap = new HashMap<People, Integer>();        hashMap.put(p1, 1);                 System.out.println(hashMap.get(new People("Jack", 12)));    }}

  在这里我只重写了equals方法,也就说如果两个People对象,如果它的姓名和年龄相等,则认为是同一个人。

  这段代码本来的意愿是想这段代码输出结果为“1”,但是事实上它输出的是“null”。为什么呢?原因就在于重写equals方法的同时忘记重写hashCode方法。

  虽然通过重写equals方法使得逻辑上姓名和年龄相同的两个对象被判定为相等的对象(跟String类类似),但是要知道默认情况下,hashCode方法是将对象的存储地址进行映射。那么上述代码的输出结果为“null”就不足为奇了。原因很简单,p1指向的对象和

  System.out.println(hashMap.get(new People("Jack", 12)));这句中的new People("Jack", 12)生成的是两个对象,它们的存储地址肯定不同。下面是HashMap的get方法的具体实现:

public V get(Object key) {        if (key == null)            return getForNullKey();        int hash = hash(key.hashCode());        for (Entry<K,V> e = table[indexFor(hash, table.length)];             e != null;             e = e.next) {            Object k;            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))                return e.value;        }        return null;    }

  所以在hashmap进行get操作时,因为得到的hashcdoe值不同(注意,上述代码也许在某些情况下会得到相同的hashcode值,不过这种概率比较小,因为虽然两个对象的存储地址不同也有可能得到相同的hashcode值),所以导致在get方法中for循环不会执行,直接返回null。

  因此如果想上述代码输出结果为“1”,很简单,只需要重写hashCode方法,让equals方法和hashCode方法始终在逻辑上保持一致性。

package com.cxh.test1; import java.util.HashMap;import java.util.HashSet;import java.util.Set;  class People{    private String name;    private int age;         public People(String name,int age) {        this.name = name;        this.age = age;    }           public void setAge(int age){        this.age = age;    }         @Override    public int hashCode() {        // TODO Auto-generated method stub        return name.hashCode()*37+age;    }         @Override    public boolean equals(Object obj) {        // TODO Auto-generated method stub        return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;    }} public class Main {     public static void main(String[] args) {                 People p1 = new People("Jack", 12);        System.out.println(p1.hashCode());                     HashMap<People, Integer> hashMap = new HashMap<People, Integer>();        hashMap.put(p1, 1);                 System.out.println(hashMap.get(new People("Jack", 12)));    }}

  这样一来的话,输出结果就为“1”了。

  下面这段话摘自Effective Java一书:

  • 在程序执行期间,只要equals方法的比较操作用到的信息没有被修改,那么对这同一个对象调用多次,hashCode方法必须始终如一地返回同一个整数。
  • 如果两个对象根据equals方法比较是相等的,那么调用两个对象的hashCode方法必须返回相同的整数结果。
  • 如果两个对象根据equals方法比较是不等的,则hashCode方法不一定得返回不同的整数。

  对于第二条和第三条很好理解,但是第一条,很多时候就会忽略。在《Java编程思想》一书中的P495页也有同第一条类似的一段话:

  “设计hashCode()时最重要的因素就是:无论何时,对同一个对象调用hashCode()都应该产生同样的值。如果在讲一个对象用put()添加进HashMap时产生一个hashCdoe值,而用get()取出时却产生了另一个hashCode值,那么就无法获取该对象了。所以如果你的hashCode方法依赖于对象中易变的数据,用户就要当心了,因为此数据发生变化时,hashCode()方法就会生成一个不同的散列码”。

  下面举个例子:

package com.cxh.test1; import java.util.HashMap;import java.util.HashSet;import java.util.Set;  class People{    private String name;    private int age;         public People(String name,int age) {        this.name = name;        this.age = age;    }           public void setAge(int age){        this.age = age;    }         @Override    public int hashCode() {        // TODO Auto-generated method stub        return name.hashCode()*37+age;    }         @Override    public boolean equals(Object obj) {        // TODO Auto-generated method stub        return this.name.equals(((People)obj).name) && this.age== ((People)obj).age;    }} public class Main {     public static void main(String[] args) {                 People p1 = new People("Jack", 12);        System.out.println(p1.hashCode());                 HashMap<People, Integer> hashMap = new HashMap<People, Integer>();        hashMap.put(p1, 1);                 p1.setAge(13);                 System.out.println(hashMap.get(p1));    }}

  这段代码输出的结果为“null”,想必其中的原因大家应该都清楚了。

  因此,在设计hashCode方法和equals方法的时候,如果对象中的数据易变,则最好在equals方法和hashCode方法中不要依赖于该字段。

  以上属个人理解,如有不正之处,欢迎批评指正。

原文发布于微信公众号 - Java团长(javatuanzhang)

原文发表时间:2017-12-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏JavaEdge

SpringBoot2.0响应式编程系列(二)-函数式编程和lambda表达式函数接口方法引用类型推断

57730
来自专栏python3

python 面向对象之类方法

类方法通过@classmethod装饰器实现,类方法和普通方法的区别是, 类方法只能访问类变量,不能访问实例变量

7620
来自专栏zingpLiu

面向对象(一)【“类与对象”的概念及特性】

面向对象程序设计(英语:Object-oriented programming,缩写:OOP)是种具有对象概念的程序编程范式,同时也是一种程序开发的抽象方针。在...

16420
来自专栏用户2442861的专栏

JAVA中重写equals()方法为什么要重写hashcode()方法说明

重写hashCode()时最重要的原因就是:无论何时,对同一个对象调用hashCode()都应该生成同样的值。如果在将一个对象用put()方法添加进HashM...

11510
来自专栏Java帮帮-微信公众号-技术文章全总结

09(01)总结final,多态,抽象类,接口

1:final关键字(掌握) (1)是最终的意思,可以修饰类,方法,变量。 (2)特点: A:它修饰的类,不能被继承。 B:它修饰的方法,不能被重写。 ...

31450
来自专栏java达人

如何在Java中避免equals方法的隐藏陷阱(一)

常见的等价方法陷阱 java.lang.Object 类定义了equals这个方法,它的子类可以通过重载来覆盖它。不幸的是,在面向对象中写出正确的equals方...

26580
来自专栏达摩兵的技术空间

js原型入门

本文主要是根据《head first javascript程序设计》摘抄学习而成,学习采用这本书主要是一位阿里大佬的建议,经过近期的学习阅读,发现确实比其他的j...

22210
来自专栏http://www.cnblogs.com

面向对象编程-类

面向对象编程OOP (object-oriented programming)是最有效的软件编写方法之一,面向对象是利用“类”和“对象”来创建各种模拟来实现对真...

336130
来自专栏java一日一条

Java习惯用法总结

在Java编程中,有些知识 并不能仅通过语言规范或者标准API文档就能学到的。在本文中,我会尽量收集一些最常用的习惯用法,特别是很难猜到的用法。(Joshua...

8820
来自专栏微信公众号:Java团长

Java习惯用法总结

在Java编程中,有些知识 并不能仅通过语言规范或者标准API文档就能学到的。在本文中,我会尽量收集一些最常用的习惯用法,特别是很难猜到的用法。

9810

扫码关注云+社区

领取腾讯云代金券