前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >文本主题模型之非负矩阵分解(NMF)

文本主题模型之非负矩阵分解(NMF)

作者头像
刘建平Pinard
发布2018-08-07 10:53:09
1.6K0
发布2018-08-07 10:53:09
举报

    在文本主题模型之潜在语义索引(LSI)中,我们讲到LSI主题模型使用了奇异值分解,面临着高维度计算量太大的问题。这里我们就介绍另一种基于矩阵分解的主题模型:非负矩阵分解(NMF),它同样使用了矩阵分解,但是计算量和处理速度则比LSI快,它是怎么做到的呢?

1. 非负矩阵分解(NMF)概述

    非负矩阵分解(non-negative matrix factorization,以下简称NMF)是一种非常常用的矩阵分解方法,它可以适用于很多领域,比如图像特征识别,语音识别等,这里我们会主要关注于它在文本主题模型里的运用。     回顾奇异值分解,它会将一个矩阵分解为三个矩阵: A=UΣVT     如果降维到k维,则表达式为: Am×n≈Um×kΣk×kVTk×n     但是NMF虽然也是矩阵分解,它却使用了不同的思路,它的目标是期望将矩阵分解为两个矩阵: Am×n≈Wm×kHk×n     分解成两个矩阵是不是一定就比SVD省时呢?这里的理论不深究,但是NMF的确比SVD快。不过如果大家读过我写的矩阵分解在协同过滤推荐算法中的应用,就会发现里面的FunkSVD所用的算法思路和NMF基本是一致的,只不过FunkSVD聚焦于推荐算法而已。     那么如何可以找到这样的矩阵呢?这就涉及到NMF的优化思路了。

2. NMF的优化思路

3. NMF 用于文本主题模型

    回到我们本文的主题,NMF矩阵分解如何运用到我们的主题模型呢?

    此时NMF可以这样解释:我们输入的有m个文本,n个词,而$A_{ij}$对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。NMF分解后,$W_{ik}$对应第i个文本的和第k个主题的概率相关度,而$H_{kj}$对应第j个词和第k个主题的概率相关度。  

    当然也可以反过来去解释:我们输入的有m个词,n个文本,而$A_{ij}$对应第i个词的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。NMF分解后,$W_{ik}$对应第i个词的和第k个主题的概率相关度,而$H_{kj}$对应第j个文本和第k个主题的概率相关度。

    注意到这里我们使用的是"概率相关度",这是因为我们使用的是"非负"的矩阵分解,这样我们的$W,H$矩阵值的大小可以用概率值的角度去看。从而可以得到文本和主题的概率分布关系。第二种解释用一个图来表示如下:

     和LSI相比,我们不光得到了文本和主题的关系,还得到了直观的概率解释,同时分解速度也不错。当然NMF由于是两个矩阵,相比LSI的三矩阵,NMF不能解决词和词义的相关度问题。这是一个小小的代价。

4. scikit-learn NMF的使用

    在 scikit-learn中,NMF在sklearn.decomposition.NMF包中,它支持L1和L2的正则化,而W,H的求解使用坐标轴下降法来实现。     NMF需要注意的参数有:     1) n_components:即我们的主题数k, 选择k值需要一些对于要分析文本主题大概的先验知识。可以多选择几组k的值进行NMF,然后对结果人为的进行一些验证。     2) init : 用于帮我们选择W,H迭代初值的算法, 默认是None,即自动选择值,不使用选择初值的算法。如果我们对收敛速度不满意,才需要关注这个值,从scikit-learn提供的算法中选择一个合适的初值选取算法。     3)alpha: 即我们第三节中的正则化参数α,需要调参。开始建议选择一个比较小的值,如果发现效果不好在调参增大。     4) l1_ratio: 即我们第三节中的正则化参数ρ,L1正则化的比例,仅在α>0时有效,需要调参。开始建议不使用,即用默认值0, 如果对L2的正则化不满意再加上L1正则化。     从上面可见,使用NMF的关键参数在于主题数的选择n_components和正则化的两个超参数α,ρ。     此外,W矩阵一般在调用fit_transform方法的返回值里获得,而H矩阵则保存在NMF类的components_成员中。     下面我们给一个例子,我们有4个词,5个文本组成的矩阵,需要找出这些文本和隐含的两个主题之间的关系。代码如下:

import numpy as np
X = np.array([[1,1,5,2,3], [0,6,2,1,1], [3, 4,0,3,1], [4, 1,5,6,3]])
from sklearn.decomposition import NMF
model = NMF(n_components=2, alpha=0.01)

    现在我们看看分解得到的$W,H$:

W = model.fit_transform(X)
H = model.components_
print W
print H

    结果如下:

[[ 1.67371185  0.02013017]
 [ 0.40564826  2.17004352]
 [ 0.77627836  1.5179425 ]
 [ 2.66991709  0.00940262]]
[[ 1.32014421  0.40901559  2.10322743  1.99087019  1.29852389]
 [ 0.25859086  2.59911791  0.00488947  0.37089193  0.14622829]]

    从结果可以看出, 第1,3,4,5个文本和第一个隐含主题更相关,而第二个文本与第二个隐含主题更加相关。如果需要下一个结论,我们可以说,第1,3,4,5个文本属于第一个隐含主题,而第二个问题属于第2个隐含主题。

5. NMF的其他应用

    虽然我们是在主题模型里介绍的NMF,但实际上NMF的适用领域很广,除了我们上面说的图像处理,语音处理,还包括信号处理与医药工程等,是一个普适的方法。在这些领域使用NMF的关键在于将NMF套入一个合适的模型,使得$W,H$矩阵都可以有明确的意义。这里给一个图展示NMF在做语音处理时的情形:

6. NMF主题模型小结

    NMF作为一个漂亮的矩阵分解方法,它可以很好的用于主题模型,并且使主题的结果有基于概率分布的解释性。但是NMF以及它的变种pLSA虽然可以从概率的角度解释了主题模型,却都只能对训练样本中的文本进行主题识别,而对不在样本中的文本是无法识别其主题的。根本原因在于NMF与pLSA这类主题模型方法没有考虑主题概率分布的先验知识,比如文本中出现体育主题的概率肯定比哲学主题的概率要高,这点来源于我们的先验知识,但是无法告诉NMF主题模型。而LDA主题模型则考虑到了这一问题,目前来说,绝大多数的文本主题模型都是使用LDA以及其变体。下一篇我们就来讨论LDA主题模型。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com) 

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-05-05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1. 非负矩阵分解(NMF)概述
  • 2. NMF的优化思路
  • 3. NMF 用于文本主题模型
  • 4. scikit-learn NMF的使用
  • 5. NMF的其他应用
  • 6. NMF主题模型小结
相关产品与服务
语音识别
腾讯云语音识别(Automatic Speech Recognition,ASR)是将语音转化成文字的PaaS产品,为企业提供精准而极具性价比的识别服务。被微信、王者荣耀、腾讯视频等大量业务使用,适用于录音质检、会议实时转写、语音输入法等多个场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档